
Dynamic Verification of Trust in Distributed Open Systems

Categories:
Multiagent Systems: Distributed AI / Trust / Verification (Model Checking)

Abstract

In open and distributed systems, agents must en-
gage in interactions of which they have no previous
experience. Deontic models are widely used to de-
scribe aspects of permission, obligation, and trust
anticipated by such agents, but no practical mech-
anism has been developed for testing deontic trust
specifications against models of multi-agent inter-
actions. This paper describes a way of doing this;
an implementation of it via model checking; and
some preliminary results on a realistic example.

1 Introduction
In large-scale open distributed systems, trust remains a funda-
mental challenge. Despite much research, the notion of trust
remains vague and there is no consensus on what exactly trust
is in systems such as multiagent systems (MAS). This is be-
cause trust may be addressed at different levels. At the low
system level, trust is associated with network security, such
as authentication (determining the identity of the user entity),
access permissions (deciding who has access to what), con-
tent integrity (determining whether the content has been mod-
ified), content privacy (ensuring that only authorised entities
can access the content), etc. At higher levels, the focus is
on trusting entities — these may be human users, software
agents, services, directories, etc. — to perform actions as
requested, provide correct information, not to misuse infor-
mation, execute protocols correctly, etc.

Available research has mainly focused on analysing, im-
proving, and developing strategies that address trust issues
at various system levels. In this paper we focus not on the
strategies, but on the possibility of specifying and verify-
ing such strategies. We therefore inherit the general defini-
tion of trust; trust is defined as the problem of who to in-
teract with, when to interact with them, and how to interact
with them. We then show how the specification and verifica-
tion methods of[Osmanet al., 2005] may be used to spec-
ify and verify trust models at various system levels. We use
the Lightweight Coordination Calculus (LCC) of [Robertson,
2004] for modelling global interaction models. Local trust
constraints, on the agents level, are modelled via a simple
trust policy language introduced in Section 3.2. These mod-
els may then be fed to a lightweight dynamic model checker

[Osmanet al., 2005] for verifying interesting trust properties,
which go beyond liveness and safety properties verified by
traditional verification techniques (Section 4). The result is
a powerful, yet simple, verification mechanism. The verifier
itself is lightweight, delegating the complexity of managing
the search space to the underlyingXSB tabled Prolog system
[Sagonaset al., 1994].

We open with a motivating example in Section 2. Section 3
provides an overview of our system model and the languages
used for specification. The verification process is introduced
in Section 4, before concluding with our results in Section 5.

2 Motivating Example: an Auction System
Section 3 presents our 2-layered architectural approach for
distributed open systems. Similar to web service architec-
tures, the basic idea is that a global interaction model is
used to specify the rules of the interaction, irrespective of the
agents engaged in this interaction. Then each agent, based
on its local constraints, tries to find the most suitable inter-
action protocol along with the most suitable group of agents
to interact with. We call the agents’ local constraints the de-
ontic constraints, since they specify the agents permissions,
prohibitions, and obligations.

Now let us consider the case where an agent is interested in
engaging in an auction scenario for either selling or buying a
specific item. Trust issues automatically arise on two levels.
These may be summarised by the following two questions:

✦ Which interaction protocol should the agent engage in?

✦ In such an interaction, which agents does it engage with?

For example, before selling its item, the auctioneer will
have to pick the appropriate interaction protocol, where ap-
propriateness is measured by the satisfiability of certain prop-
erties. Traditional properties to check for are usually liveness
and safety properties. For example, the auctioneer may de-
cide that the interaction protocol is trusted only if it is dead-
lock free (trust issueTI 1 of Figure 1). A much more interest-
ing set of properties may be obtained when tackling domain
specific issues. For example, a more challenging trust issue
to verify is whether the interaction protocol enforces truth-
telling by the bidders or not (trust issueTI 2 of Figure 1).

For a given interaction protocol, each agent will then have
to select the appropriate agents for such an interaction. The
goal is to achieve a set of agents that trust each other. For

TI 1: Is the interaction protocol deadlock free?

TI 2: In such an interaction, can the bidders be better off if they bid either a lower or a
higher value than their true valuation?

TI 3: If from previous experience the agent knows thatDVDs from auctioneerA are
not original, thenA is not trusted in delivering good qualityDVDs.

TI 4: If the auctioneer agent A is not trusted in delivering good qualityDVDs, then it
is not trusted in delivering good qualityCDs.

TI 5: Agent A is trusted to take the role of the auctioneer only if it has decent ratings
and holds a good reputation, with more importance given to the most recent
ratings.

Figure 1: The auction scenario – some trust issues

example, one bidder may trust auctioneerA in selling any-
thing exceptDVDs — possibly, due to previous experience,
it now knows that theseDVDs are not original. It may also
use socio-cognitive models of trust to learn that if theDVDs
are not original, then most probably theCDs will not be too
(trust issuesTI 3 andTI 4 of Figure 1). Another widely used
trust mechanism is the use of ratings and reputations. The
agents should be capable of collecting (or having access to)
each other’s rating. It is then up to each agent to aggregate
these ratings as they see fit. For example, a bidding agent
might decide not to trust new auctioneers with no selling his-
tory. An average rating is then required, possibly giving more
importance to the latest ratings (trust issueTI 5 of Figure 1).

The trust issues of Figure 1 cover a wide sample of the vari-
ous trust mechanism in the literature[Ramchurnet al., 2004]:
from socio-cognitive models (TI 4 of Figure 1), to evolution-
ary and learning models (TI 3 of Figure 1), reputation mech-
anism (TI 5 of Figure 1), trustworthy interaction mechanisms
((TI 2 of Figure 1)), etc. While we do not specify how trust is
learned, we focus on the agent’s individual aggregation mech-
anisms and their specification, which is essential for verifying
trust. For example, while we do not focus on how the agent
obtains the ratings of another (TI 5 of Figure 1), we do re-
quire the specification of how these ratings are aggregated.

The main goal of this paper is to show how agents may
answer these questions by using a dynamic model checker. In
our running example, the agent’s constraints used (or the trust
constraints) are those of Figure 1. The interaction protocol
verified is presented by the state-space graph of Figure 2.

The interaction of Figure 2 is that of a Vickrey auction. The
interaction starts at states0 when the auctioneerA sends an
invite to a set of bidders for bidding on itemI with a reserve
price R. The interaction remains at states0 until invites are
sent to all bidders. Then the bidders send their sealed bids
back to the auctioneer. This is represented by states1 of Fig-
ure 2. When all bids are collected, the interaction moves to
the new states2. The auctioneer informs the winner of the
priceV to be paid, moving the interaction to states3. Finally,
the winning bidder sends its paymentP, and the interaction is
completed at states4.

Before we present the verification mechanism used (Sec-
tion 4), Section 3 introduces our system model’s architecture
and the languages used to specify such a system.

message(a(auctioneer,A), a(bidder,Bi), invite(I,R))

message(a(bidder,Bi), a(auctioneer,A), bid(Vi))

message(a(auctioneer,A), a(bidder,Bi), invite(I,R))

message(a(bidder,Bi), a(auctioneer,A), bid(Vi))

message(a(auctioneer,A), a(bidder,Bi), won(I,V))

message(a(bidder,Bi), a(auctioneer,A), payment(P))

s0

s1

s2

s3

s4

wheremessage(A,B,M)represents the transmission of messageM from A to B

Figure 2: The auction scenario – the interaction’s state-space

3 System Modelling
We viewMAS systems as a collection of autonomous agents.
The system is open and distributed. Various agents may join
or leave the system at any time. Interactions become the back-
bone that holds the system together. Agents group themselves
into different, and possibly multiple, interactions. Figure 3
provides such an example. A collection of agents are grouped
into three different interactions (or scenarios): two auction
scenarios and a trip planning scenario.

Due to the dynamic nature of the system, we believe inter-
action groups should be created dynamically and automati-
cally by the agents. We also believe everything should be dis-
tributed. This implies that there should be no higher layer for
coordination, control, synchronisation, etc. It is the agents’
responsibility to group themselves into different scenarios.
As a result, we split theMAS model into two layers: the inter-
action layer and the agents layer.

The interaction model specifies the rules and constraints
on the interaction. This indicates how exactly the interaction
may be carried out. The agents’ models specify the rules and
constraints on the agents. These are the agents’ permissions,
prohibitions, and obligations; we therefore call this model the
deontic model (Figure 3). Note that for one scenario there is
one global interaction model and several local deontic mod-
els. While agents need to share the interaction model in order
to know the rules of the interaction they’re engaged in, each
agent will have its own local constraints in its deontic model.

In what follows, we introduce the languages used in speci-
fying these models.

3.1 The Interaction Model

We choose the Lightweight Coordination Calculus (LCC)
[Robertson, 2004] for modelling the interaction’s state-space
graph, since it is the only executable process calculus forMAS
that we are aware of1. Having an executable process calculus
for modelling the interaction’s state-space graph is very use-
ful for verifying the executable models of interaction. Fig-
ure 4 presents the syntax ofLCC.

1Note that we are aware of other coordination systems, but none
of these are based directly on a process calculus

engaged in

interaction
model

rules of the
interaction

agent
constraints

deontic
model

trip planning
scenario

auction
scenario

auction
scenario ≡

≡

Figure 3: TheMAS model – a 2-layered architecture model

Interaction := {Clause, . . .}
Clause := Agent :: ADef
Agent := a(Role, Id)
ADef := null← C | Agent← C |Message← C |

ADef then ADef | ADef or ADef |
ADef par ADef

Message := M ⇒ Agent |M ⇐ Agent
C := Term | C ∧ C | C ∨ C

Role := Term
M := Term

null denotes an event which does not involve message passing.
Term is a structured term in Prolog syntax.
Id is either a variable or a unique agent identifier.

Figure 4:LCC syntax

Agents, inLCC, are defined by their roles and identifiers.
An interaction is defined by a set of clauses. A clause gives
each agent role a definition that specifies its acceptable be-
haviour. An agent can either do nothing (usually used for
internal computations), take a different role, or send/receive
messages (M ⇒ A, M ⇐ A). Agent definitions are con-
structed using the sequential (then), choice (or), parallel
composition (par), and conditional (←) operators. The con-
ditional operator is used for linking constraints to message
passing actions.

Example Revisited
Figure 5 presents the specification of the state-space graph
of Figure 2 viaLCC. The auctioneerA, knowing the item
I, the reserve priceR, and the set of biddersBs, recursively
sends an invite to all bidders in setBs. It then takes the role
of auctioneer2to collect bids, send the winner a message,
collect payment, and deliver the item won. On the other side,
each bidder agent receives an invite from the auctioneer and
sends its bid based on its valuation. The winner receives a
win message and then sends its paymentP.

3.2 Deontic Models
In this paper, we focus on thetrust constraints imposed by
the agents. We propose a trust policy language for the speci-
fication of trust rules. The language is similar to other logic-
based policy languages which are built on deontic concepts,
such asASL [Jajodiaet al., 1997], RDL [Haytonet al., 1998],
and Rei[Kagal et al., 2003]. The syntax of our language is
presented by Figure 6.

The syntax states that trust rules might either hold in
general or under certain conditions:TrustSpecs [←
Condition]. The interaction’s trustworthiness is modelled by

a(auctioneer(I, R, Bs), A) ::
(invite(I, R)⇒ a(bidder, B)← Bs = [B|T]then
a(auctioneer(I, R, T), A))

or
a(auctioneer(Bs, []), A)← Bs = [].

a(auctioneer2(Bs, V s), A) ::
append([B, V], V s, V n)← bid(B, V)⇐ a(bidder, B) then
(a(auctioneer(Bs, V n), A)← not(all bid(Bs, V n))
or
(win(B1, V 2)⇒ a(bidder, B1)
← all bid(Bs, V n) and

highest(V n, B1,) and second highest(V n, , V 2) then
deliver(I, B1)← payment(P)⇐ a(bidder, B1))).

a(bidder, B) ::
invite(I, R)⇐ a(auctioneer(, ,), A) then
bid(B, V)⇒ a(auctioneer(,), A← valuation(I, V) then
win(Bi, V i)⇐ a(auctioneer(,), A) then
payment(P)⇒ a(auctioneer(,), A)← Bi = B and payment(P).

Figure 5:LCC specification for the interaction of Figure 2

TrustRule := TrustSpecs [← Condition]
TrustSpecs := trust(interaction(IP), Sign) |

trust(Agent, Sign) |
trust(Agent, Sign, Action)

Agent := a(Role, Id)
Sign := + | −

Action := MPA | N-MPA | TrustSpecs
MPA := Message⇒ Agent |

Message⇐ Agent
Condition := Condition ∧ Condition |

Condition ∨ Condition |
Temporal | Term

Role,N-MPA, Message := Term

where,[X] denotes zero or one occurrence ofX,
IP is an interaction protocol specified inLCC,
Id is either a variable or a unique agent identifier,
Temporal is a temporal property whose syntax is specified in[Osmanet al., 2005],
and
Term is either a variable or a structured term in Prolog syntax.

Figure 6: Syntax of our trust policy language

trust(interaction(IP), Sign), whereIP is theLCC speci-
fication of the interaction protocol in question (e.g. the inter-
action protocol of Figure 5). The agent’s trustworthiness is
modelled bytrust(Agent, Sign), where+ and− values of
Sign are used to model trust and distrust, respectively. Only
if the agent is trustworthy, it can engage in an interaction.
Trusting or distrusting agents to perform specific actions is
modelled bytrust(Agent, Sign,Action). Actions could ei-
ther be message passing actions (MPA) — such as sending

(Message ⇒ Agent) or receiving (Message ⇐ Agent)
messages — or non-message passing actions (N-MPA) —
such as performing computations. We also allow actions to
take the form of another trust rule (seeTrustSpecs in the
Action definition). This supports the delegation of trust,
since it permits the specification of whether an agent’s trust
itself is to be trusted or not.

Example Revisited
Trust issuesTI 3, TI 4, andTI 5 of Figure 1 address trust at
the agent level. In what follows, we present the specification
of the more complex trust rule,TI 5, in our trust policy lan-
guage. The rule is presented by Figure 8(a). It specifies that
agentA is trusted as an auctioneer only if it has a selling his-
tory of at least 50 items and an average rating above 70%,
going up to 90% for the latest 20 transactions. The mecha-
nism presented here distrusts new entrants and focuses on the
agent’s latest ratings rather than the overall one.

Trust issuesTI 1 andTI 2 of Figure 1 address trust at the
interaction level. The conditions for trusting an interaction
protocol are specified via a temporal language. Since the
‘deadlock free’ property ofTI 1 is a straightforward property
to model via a temporal language, we show how the more
challenging property of ‘enforcing truth-telling by the bid-
ders’ (TI 2) may be specified:

To prove the protocol enforces truth-telling by the bidders,
we prove that, for the interaction protocol of Figure 5, the
bidders cannot do any better than bidding their true valua-
tion V: the maximum value they are willing to pay. For this,
we study the two cases: (1) if the competing agent bids a
higher valueCh, and (2) if the competing agent bids a lower
valueCl. In Figure 7, the grey circle represents the bidder and
its valuationV. The other two circles represent the two cases
of the competing agent, which may bid either a higher or a
lower value:Ch andCl, respectively. For each of these two
cases, the bidder may either bid its true valuation, a value be-
tween its true valuation and that of its competitor, or a value
beyond that of the competitor (Figure 7). The trust rule of
Figure 8(b) studies all 6 cases, respectively. For each bid, the
winner and the price won at are computed through the tempo-
ral property[bid(Bidder,Bid1), bid(Competitor,Bid2)]<win(Winner,Price)> tt2.
The bidder should, naturally, be expected to lose to its com-
petitor in cases 1, 2, and 6. It should win in cases 3, 4, and
5, where case 4 would be the only case where the bidder bids
its true valuation and wins the item for the priceY. The trust
rule above requires that the bidder is not better off when win-
ning in cases 3 and 5, where the item is won for pricesX and
Z, respectively. This is expressed by the conditionsX<Y and
Z<Y.

The InteractionProtocolof the trust rule presented by Fig-
ure 8(b) is in fact theLCC protocol of Figure 5. This rela-
tively complexLCC structure3 is passed entirely as a parame-

2The temporal property[X,Y]<Z>tt specifies that if messagesX

andY are sent, then messageZ will eventually be received.
3For a comparison between theLCC process calculus and tra-

ditional process calculi, such as Milner’sCCS [Milner, 1989] and
Hoar’s CSP [Hoare, 1985], the interested reader may refer to[Os-
man et al., 2005]. From this comparison, we may assert that the
complexity of LCC is similar to that of traditional process calculi,

hi
gh

er
 c

om
pe

tin
g

bi
d

lo
we

r c
om

pe
tin

g
bi

d

Cl

Ch

V

case 5: agent bids Vl

case 6: agent bids Vl ’

case 4: agent bids V

where Cl > Vl ’

where V > Vl > Cl

case 3: agent bids Vh ’

case 2: agent bids Vh

case 1: agent bids V

where Vh ’ > Ch

where Ch > Vh > V

Figure 7: The bidding strategies – 6 cases

trust(a(auctioneer,A), +)←
rating count(a(auctioneer,A), Total) and Total> 50 and
rating average(a(auctioneer,A), Average) and Average> 0.7 and
rating latest(a(auctioneer,A), 20, Latest) and Latest> 0.9.

(a) Trust ruleTI 5

trust(a(interaction(InteractionProtocol)), +)←
Vl ’<Cl and Cl<Vl and Vl<V and V<Vh and Vh<Ch and Ch<Vh ’ and
[bid(Bidder,V), bid(Competitor,Ch)] <win(Competitor,)> tt and
[bid(Bidder,Vh), bid(Competitor,Ch)] <win(Competitor,)> tt and
[bid(Bidder,Vh ’), bid(Competitor,Ch)] <win(Bidder,X)> tt and
[bid(Bidder,V), bid(Competitor,Cl)] <win(Bidder,Y)> tt and
[bid(Bidder,Vl), bid(Competitor,Cl)] <win(Bidder,Z)> tt and
[bid(Bidder,Vl ’), bid(Competitor,Cl)] <win(Competitor,)> tt and
X<Y and Z<Y.

(b) Trust ruleTI 2

Figure 8: Specification of trust rules

ter to the trust rule. The interaction protocol is then said to be
trusted if the condition — the collection of temporal proper-
ties — is satisfied. In this example, the condition verifies, via
the six temporal properties of Figure 8(b), the possible occur-
rence of transmitting thebid(,) andwin(,) messages in
theLCC interaction protocol of Figure 5.

It is worth noting that the trust rule is restricted to the auc-
tions domain, yet independent of the specific auction proto-
col it is verified upon. For example, the six cases of Fig-
ure 7 are comprehensive, even for auction systems consist-
ing of more than two agents. This is because verifying the
utility of one agent should take into consideration only the
competing agent’s bid — all other agents’ bids are irrelevant.
Furthermore, the verification of such a trust rule will termi-
nate with correct results, whether positive or negative, for any
auction protocol that requires agents to place their bids be-
fore a message is transmitted informing who the winner is.
It will probably fail when verified against more complex auc-
tion protocols, such as those selling multiple items and having
several winners. However, the verification will be success-

such asCCSandCSP.

ful in the most common auctions, such as the English, Dutch,
sealed first-price, and sealed second-price auctions. Allowing
agents to automatically verify such properties (which are rel-
atively independent of the specific interaction protocol), aids
the agents in making their protocol selection when faced with
new and unexplored protocols.

4 The Dynamic Model Checker
We believe it is solely the agents’ responsibility to answer the
question of how, when, and who to interact with. Ideally, in
a highly dynamic system, this should be done at runtime by
deciding which combination of interaction and deontic (trust)
models is currently suitable. But is this feasible?

We choosemodel checkingfrom amongst other verification
techniques because it provides a fully automatic verification
process which could be carried out by the agents during in-
teraction time. We show howinteraction time verificationis
made possible with the use of a remarkably efficient (see Fig-
ure 11) and lightweight model checker. The concerned agent
can then feed the model checker with the system model: the
combination of the global interaction model and agents’ lo-
cal trust rules. The model checker should then verify whether
the trust rules are consistent amongst themselves as well as
consistent with respect to the interaction model. It should be
capable of detecting non-suitable (distrusted) agents and/or
interaction protocols.

4.1 Model Checking: an Overview
The model checking problem can be defined as follows:
Given a finite transition systemS and a temporal formula
φ, doesS satisfyφ? The model checking process is divided
into three stages: modelling, specification, and verification.
The system to be verified must first be modelled in the lan-
guage of the model checkerS. The properties (φ) to which
the system model is verified upon should be specified using
the model checker’s temporal logic. Both the system model
and the properties specification are fed to the model checker
for verification. The model checker is, essentially, an algo-
rithm that decides whether a modelS satisfies a formulaφ.
Figure 9 illustrates the model checking process.

Checking
Model

Algorithm

Result:

Property specification:

System model:

true /
false

φ

S

Figure 9: The model checking process

4.2 Model Checking: the Implementation
In traditional model checking, the system model represents a
state-space graph. The requirements on a given state-space
are then specified through temporal properties in the prop-
erty specification section. In our case, the system model is
a combination of the shared interaction’s state-space and the

agents’ local trust constraints. Trust constraints based on tem-
poral properties, such as those constraining the interaction
(e.g.TI 2 of Figure 8(b)), are modelled in the property speci-
fication section. Other trust rules constraining the agents (e.g.
TI 5 of Figure 8(b)) are kept on the deontic level of the system
model. Figure 10 provides an overview of our trust verifying
model checker. The sample input data is that of the auction
system scenario. The interaction model example of Figure 10
is a copy of that of Figure 5 — theLCC specification of Fig-
ure 2. The deontic model example, or the trust constraints on
agents, is that of Figure 8(a). The property specification is the
same as the trust constraint on the interaction of Figure 8(b).

The model checker should then verify that the interac-
tion model is trusted and that the agents are trusted to en-
gage in the given interaction. To verify this, the concerned
agent feeds the model checker with the appropriate interac-
tion model along with the trust rules that are split between
the deontic model and the property specification. The verifi-
cation process is explained in the following section.

The Verification Process
In this section, we present an overview of the model checking
algorithm[Osmanet al., 2005] — the black box of Figure 10.
The verification process is carried out as follows. A local
model checker partially constructs the state-space one step at
a time until a solution is reached. Verification starts at the ini-
tial state s0 and tries to verify that the propertyφ is satisfied at
s04. If it succeeds, the verifier terminates and the property is
said to be satisfied. Otherwise, the verifier attempts to make
a transition(s) to the next state(s) in the state-space5. If the
transition(s) violates any of the trust (deontic) rules, then the
verification process terminates and the property is not satis-
fied. Otherwise, the satisfaction of the propertyφ is verified
with respect to the new state(s), and the whole process is re-
peated all over again.

The result is a remarkably compact model checker built on
top of theXSB system[Sagonaset al., 1994], a tabled Prolog

4Satisfaction is verified by applying the modalµ-calculus proof
rules presented in[Osmanet al., 2005].

5Transitions are made based on theLCC transition rules pre-
sented in[Osmanet al., 2005].

m
od

el
in

te
ra

ct
io

n
m

od
el

pr
op

er
tie

s
de

on
tic

te
m

po
ra

l

Checking
Model

Algorithm

Result:

Property specification:

System model:
s0

s1

s2

s3

trust(a(interaction(InteractionProtocol)), +)←

[bid(Bidder,V), bid(Competitor,Ch)] ¡win(Competitor,)¿ tt and
V<Vh and Vh<Ch and Ch<Vh ’ and
Vl ’<Cl and Cl<Vl and Vl<V and

...
...

trust(a(auctioneer,A), +)←

...
...

rating count(a(auctioneer,A), Total) and Total> 50 and

...
invite(I,R)⇐ a(auctioneer(, ,),A) then

a(bidder,B) ::

append([B,V], Vs, Vn)← bid(V)⇐ a(bidder,B) then
a(auctioneer2(Bs,Vs), A) ::

...

...

a(auctioneer(I,R,Bs),A) ::

true /
false

(invite(I,R)⇒ a(bidder,B)← Bs=[B—T] then

Figure 10: The auction scenario – the model checker’s input

system. This compactness is achieved by placing the burden
of searching the state-space on the underlyingXSB system.

5 Conclusion and Results
Trust is the key to the success of large-scale distributed sys-
tems. Most of the work carried on in the field of trust has
focused on the strategies for ensuring trusted interactions. In
this paper, we have presented a mechanism for specifying
and verifying such strategies. Our mechanism allows the in-
volved agents to dynamically and automatically invoke the
model checker at run-time, when the conditions for verifica-
tion are met, and verify that certain trust requirements will
not be broken for a given scenario with a given set of collab-
orating agents.

The complexity of verifying multi-agent systems relies on
the complexity of the different roles in the interaction, rather
than the number of agents involved in such an interaction.
As presented by Section 3.1, interaction protocols are defined
in terms of agents’ roles instead of the individual agents that
might be engaged in the interaction. For example, there are
two roles for our auction scenario: the role of the auctioneer
and that of the bidder. All bidders then share the same proto-
col specification (Figure 5), irrespective of their different lo-
cal deontic constraints. The complexity of verifying the five
trust issues of Figure 1 for the auction scenario of Figure 2
(or Figure 5) depends on the complexity of the auctioneer’s
and bidder’s role definition. In our scenario, if the trust issues
are verified for a set of one auctioneer agent and two bidder
agents, then the results will hold for a set of one auctioneer
agent andn bidder agents, wheren > 2. The trick is to know
the minimum number of agents required for verifying certain
properties of a given interaction protocol. We assume such
information is provided with the interaction protocol.

In our example, we set the scene to incorporate one auc-
tioneer and two bidders. The dynamic model checker is then
invoked for verifying the five trust issues of Figure 1 against
the auction scenario of Figure 5. The results are presented by
Figure 11.

TI 1 TI 2 TI 3 TI 4 TI 5
CPU time (sec) 0.017 0.204 0.020 0.021 0.010

Memory usage (MB) 1.327 14.052 1.356 1.376 0.917

Figure 11: Preliminary results

The novelty of our work is in introducinginteraction time
verificationand applying it to the field of trust in multi-agent
systems. This is made possible by using a relatively compact,
yet efficient, dynamic model checker which allows the agents
to invoke the model checker at run-time for verifying various
trust issues. The model checker is compact enough (imple-
mented in 150 lines of Prolog code) and efficient enough (as
shown by the results of Figure 11) for allowing agents to per-
form the verification at interaction time.

References
[Haytonet al., 1998] Richard Hayton, Jean Bacon, , and Ken

Moody. Access control in an open distributed environ-

ment. InSymposium on Security and Privacy, pages 3–14,
Oakland, CA, 1998. IEEE Computer Society Press.

[Hoare, 1985] Charles Hoare. Communicating Sequential
Processes. Prentice Hall, 1985.

[Jajodiaet al., 1997] Sushil Jajodia, Pierangela Samarati,
and V. S. Subrahmanian. A logical language for expressing
authorizations. InProceedings of the 1997 IEEE Sympo-
sium on Security and Privacy (SP ’97), page 31, Washing-
ton, DC, USA, 1997. IEEE Computer Society.

[Kagalet al., 2003] Lalana Kagal, Tim Finin, and Anupam
Joshi. A policy language for a pervasive computing envi-
ronment. InIEEE 4th International Workshop on Poli-
cies for Distributed Systems and Networks. IEEE Com-
puter Society, June 2003.

[Milner, 1989] Robin Milner. Communication and Concur-
rency. Prentice Hall, 1989.

[Osmanet al., 2005] Nardine Osman, David Robertson, and
Christopher Walton. Run-time model checking of interac-
tion and deontic models for multi-agent systems. InPro-
ceedings of the Third European Workshop on Multi-Agent
Systems, 2005.

[Ramchurnet al., 2004] Sarvapali D. Ramchurn, Dong
Hunyh, and Nicholas R. Jennings. Trust in multi-agent
systems.Knowledge Engineering Review, 2004.

[Robertson, 2004] David Robertson. A lightweight coordi-
nation calculus for agent social norms. InProceedings of
Declarative Agent Languages and Technologies workshop,
2004.

[Sagonaset al., 1994] Konstantinos Sagonas, Terrance
Swift, and David S. Warren. XSB as an efficient deductive
database engine. InProceedings of the 1994 ACM
SIGMOD international conference on Management of
data (SIGMOD ’94), 1994.

