
Using Distributed Protocols as an

Implementation of Dialogue Games

Jarred P. McGinnis, David Robertson, and Chris Walton

Centre for Intelligent Systems and their Applications
School of Informatics

University of Edinburgh
Appleton Tower, Room 3.07

11 Crichton Street
Edinburgh EH8 9LE
(0)131 651-4156

j.p.mcginnis@sms.ed.ac.uk

Abstract. The dialogue game formalism presented in [MP02] can be
implemented using a distributed interaction protocol [Rob03]. This pro-
vides a means for generating atomic dialogue types as well as the ability
to form complex dialogue structures.
The agent’s use of dialogue games is expressed in a shared distributed
protocol language. Other agents are not required to know the intricacies
of the dialogue games, but instead need only to understand the protocol
language. All the rules necessary to play the dialogue game or follow the
game framework are provided to the agent as a protocol passed between
the two agents. The protocol language does this by adapting aspects of
Electronic Institutions [ERAA+00] to express the agent dialogue as a
distributed protocol, while avoiding some of the shortcomings of the EI
approach (e.g. static definition of protocols and centralised control).

1 Introduction

Dialogue game frameworks attempt to construct more complex and robust agent
conversations. This is achieved by combining different atomic dialogue types
which have been identified by philosophers analysing human dialogues [WK95].
This approach tries to avoid the semantic ambiguities inherit in mentalistic
models and the rigidity of static protocol-based approaches [FIP01]. The dia-
logue game approach depends on several assumptions about participating agents.
Agents participating in the dialogue game framework must agree on all the rules
of the framework. If a means to implement the formal definitions of the frame-
work exists and it is possible to guarantee that the agents playing the dialogue
game share the same rules, then this is an ideal approach to agent systems. How-
ever, in large open multi-agent systems it is not be practical to make these con-
straints or guarantees. Even though the Electronic Institution model [ERS+01]
is limited and inflexible, it is easy to deploy and ensures that agents behave cor-
rectly within the system. The protocol language, described in this paper, utilises

the advantages of both dialogue games and Electronic Institutions. It has the
flexible and dynamic nature of dialogue games and uses components of the well
developed implementation of Electronic Institutions. The dialogue game frame-
work can be written in the protocol language and then be distributed to the
agent’s communicative partners. This distributed protocol can then be followed
by the other agents without needing to know anything about the dialogue game
framework that generated it.
The remainder of this section provides background to the Dialogue Game

framework. Section 2 discusses the framework, and section 3 explains the proto-
col language and its relationship to the framework. Lastly, Section 4 will provide
an example and the final section will discuss further work and potential hazards
related to this approach.

1.1 Dialogue Typology

The philosophers Doug Walton and Erik Krabbe have developed a typology of
dialogues to detect fallacious reasoning [WK95]. This typology was adopted by
Chris Reed [Ree98] in a formalism for multi-agent systems and inter-agent com-
munication. Of the six kinds of dialogue identified, five of these dialogue types
are applicable to the domain of agent communication. The sixth, eristic, is a
dialogue where reasoning has ceased and the participants use the dialogue for
the airing of grievances and one-upmanship. This dialogue type is important
for the study of human conversations, but it is ignored by the agent research
community. Dialogues are classified into the different types by three criteria.
The first criteria considers the initial situation. What information do each of the
participants have? Are the agents cooperative or competitive with each other?
The second criteria concerns the individual goals an agent has for the interac-
tion, and the third criteria are the goals shared by the participating agents. In
Information-Seeking dialogues, one agent seeks the answer to a question which
it believes the other agent possesses. Inquiry dialogues occur when two agents
work together to find the answer to a question whose solution eludes both agents.
A Persuasion dialogue has one agent attempting to convince another to adopt
some proposition which it currently does not believe. Negotiation dialogues occur
when the participants haggle over the division of a scarce resource. In Delibera-
tion dialogues, the agents attempt to agree on a course of action for a particular
situation. It is rare that any actual dialogue will be purely of one instance of
one kind of dialogue. It is more likely that a dialogue will consist of an amal-
gamation of the different types. For example, during a negotiation, propositions
may need clarification and an information-seeking dialogue would occur. This
dialogue typology is fundamental to recent agent communicative models using
dialogue games.

1.2 Dialogue Games

Dialogue games have existed for thousands of years, since Aristotle, as a tool
for philosophers to formalise argumentation. This was an attempt to identify

when an argument or its justification is weakened or undercut by an argument
or refutation made be the other participant. By each player making ’moves’ and
following a set of rules, it was hoped that properties of good and bad arguments
could be identified. This formalism for argumentation has been employed to
increase the interoperability of software agents, the objective being to produce a
meaningful interaction between dialogical partners by following the rules of an
individual dialogue game.
There are several components to a dialogue game. The commencement and

termination rules specify the conditions under which a dialogue can start or
end. The participants must share a set of locutions. This is a set of performa-
tives from an agent communication language that is shared between the agents.
This language must include the ability to utter assertions as well as justifications
and challenges to those assertions. Another component is the combination rules.
These rules define when particular illocutions are permitted, required, or illegal.
The last part necessary for a dialogue game is the rules for commitment. These
rules create obligations on the agent with respect to the dialogical moves of the
agent. These commitments can be divided into dialogical and semantic. Dialogi-
cal commitments are the obligation of an agent to make a particular move within
the context of the dialogue game. Semantic commitments indenture the agent
to an action beyond the dialogue game itself. A record of these commitments is
publicly stored. For example, if you say you are willing to pay the highest price
in an auction, it will be known that you are committed to actually pay that
price.

2 McBurney/Parsons Dialogue Framework

The formalism creates three tiers for agent dialogues. In order from lowest to
highest, the layers are: topic, dialogue, and control. The topic layer is concerned
with the domain of discourse being discussed in the dialogue, e.g. the topic of
‘Beatles songs’ or the topic of ‘learning systems’. The remaining two layers are
of more interest. The dialogue layer is the instantiation of the different types of
dialogues, and the control layer is where agents decide which dialogues to take
part in. This particular framework assumes that the agents willingly participate
in any occurrence of a dialogue.

2.1 Dialogue Layer

This is the layer where the individual dialogue types occur. Each agent will have
combination rules and commitment rules which will manifest themselves at this
layer. These rules constrain the moves the participants can make at a specific
point in the dialogue. The utterance of each illocution is dependant on the ac-
tivity of the conversation before it. For example, a justification cannot be made
until an assertion has been stated, or if an agent makes an assertion it cannot
contradict that assertion without some retraction occurring. In this layer, there
must be illocutions that make it possible for the agents to interrupt the dialogue

and return to the control layer. This illocution would be expressed if any com-
mencement, termination, combination, or commitment rule which necessitates
either the closing or the initiation of a dialogue. The actual beginning and ending
of a dialogue type is done at the control layer.

2.2 Control Layer

This layer enables the agent to propose and agree to the specific dialogue types it
wishes to engage in at the dialogue layer. Rules at this level define the legal com-
binations of the individual dialogue types. This is done by the expression of the
illocution BEGIN(G(p)) or END(G(p)). G is the type of dialogue to start or end
and p is the topic of the dialogue game. The legal dialogues types are iteration,
sequencing, parallelisation, embedding, and testing. Iteration is a finite number
of one type of dialogue. Each occurrence of the dialogue begins directly after the
previous one ends. Sequencing is similar to iteration but the next dialogue to
begin can be of any type. Parallelisation represents the simultaneous expression
of two dialogue types until each are closed. Embedded dialogues happen when
during the course of a dialogue another is begun without ending the first. The
embedded dialogue continues until it finishes, and the initial dialogue is contin-
ued at the point of interruption. This allowance for combinations of dialogues
creates a difficulty for the rules for commitment, specifically semantic commit-
ments. If a dialogue creates a semantic obligation and the commitment remains
unsatisfied when another dialogue is opened, opinions differ on the ordering of
satisfaction of the commitments. When an agent wants to suggest a dialogue
sequence it is written like this, BEGIN(G(p)∩H(p)). This states that the agent
would like to begin, in parallel ∩, the dialogues G and H about topic p. The
ordering of the satisfaction of semantic commitments in the dialogues is written
like this, BEGIN(G(p)∩H(p) | SC(G(p)) > SC(H(P))), which states that the
semantic commitments of G override those of H

3 The Distributed Protocol Language

The development of the protocol language is a reaction to work done on Elec-
tronic Institutions. Electronic Institutions provide structure to large and open
multi-agent systems. By emulating human organisations, Electronic Institutions
provide a framework which can increase interoperability. The EI regulates the
agent’s communicative activities by forcing agents to adhere to their roles, com-
mitments, and obligations. Also, the EI ensures each agent participating within
the system shares the same world-view about the conversation and its topics.
Although the EI framework provides structure and stability to an agent system,
it comes at a cost. Integral to EI is the notion of the administrative agents. The
administrative agents’ task is to enforce the conventions of the Institution and
shepherd the participating agents. Messages sent by agents are sent through the
EI. This synchronises the conversation between the conversing agents, and keeps
the administrative agent informed of the state of the interaction.

An unreliable keystone makes the whole of the arch defective, just as the
system is now dependent on the reliability and robustness of its administrative
agent. Also, this centralisation of control runs counter to the agent paradigm of
distributed processing. Within the scenes of Electronic Institutions, interaction
protocols are defined to guarantee that agents utter the proper illocutions and
utter them at the appropriate time. This is defined formally by the specifications
of the EI and left to the designers of individual agents to implement. It assumes
that the agent’s interaction protocol covers the entire conversation space (all
possible paths the dialogue may take) before the conversation occurs. If the
interaction needs of the institution change, this would require redefinition of the
Institution and re-synthesis of the individual agents. Agents are also expected
to know the global state of the system and their exact position within it. In EIs
this is handled by an administrative agent whose job it is to synchronise the
multitude of agents involved.

The protocol language is an attempt to address some of these shortcomings of
EIs but retain the benefits of implementing the EI framework. Its goal is to lessen
the reliance on centralised agents for synchronisation of individual participants
in the system, provide a means for dissemination of the interaction protocol
and the separate the interaction protocol from the agent’s rationalisations to
allow the dynamic construction of protocols during the interaction. By defining
interaction protocols during run-time, agents are able to interact in systems
where it is impossible or impractical to define the protocol beforehand. The
protocol defined in Figure 1 is similar to the protocol described in [WR02].
This technical paper uses the term ’Flexible Protocol’. The protocol alone is not
particularly flexible, but it is the use of the protocols and the protocol language
that enables flexibility.

The syntax of the protocol language is shown in Figure 1. An agent protocol
is defined as an agent definition and composed with an operation. The agent
definition individuates the agents participating in the conversation(id), the role
the agent is playing(r) and the scene in which the role is being played(n). Op-
erations can be classified in three ways: actions, control flow, and conditionals.
Actions are the sending or receiving of messages, a no op, or the adoption of a
role. Control Flow operations temporally order the individual actions. Actions
can be put in sequence (one action must occur before the other), parallel (both
action must occur before any further action), or choice (one and only one action
should occur before any further action). Conditionals are the preconditions and
postconditions for operations. The message passed between two agents using the
protocol consists of three parts. The first is the actual illocution the agent is
wishing to express. The second is the full protocol itself. This is the protocol
for all agents and roles involved in the conversation. This will be necessary for
the dissemination of the protocol to agents. The last part to be sent is a copy
of the dialogue as it occurs, the dialogue clause. The dialogue clause serves as
a history of the conversation as it progresses, a marker for the current state of
the dialogue, and a record of the values given to variables. Other features of the
protocol are the inclusion of constraints on the dialogue and the use of roles.

P ∈ Agent Protocol ::= θ :: op.
θ ∈ Agent Definition ::= agent(id,r,n)
op ∈ Operation ::= no op

| θ

| (op) (Precedence)
| ρ⇒ θ (Send)
| ρ⇐ θ (Receive)
| op1 then op2 (Sequence)
| op1 or op2 (Choice)
| op1 par op2 (Parallelism)
| op → ψ (Prerequisite)
| op ← ψ (Consequence)

S ∈ Scene ::= n[R,A,P]
ρ ∈ performative
ψ ∈ state ::= a procedural call

to express a precondition or
postcondition of an operation

Fig. 1. The Definition of the Protocol

An agent’s activities within a multi-agent system are not determined solely by
the agent, rather it is the relationship to other agents and the systems itself
that helps determine what performative an agent will utter. These can be cod-
ified as roles. This helps govern the activity of groups of agents rather than
each agent individually. Constraints are marked by ‘←’ (requirements) and ‘→’
(consequences). These are requirements or consequences for an agent on the per-
formatives or roles available to it. The constraints are intended to provide the
agent with a shared semantic for the dialogue. These constraints communicate
meaning and implication of the action to the agent’s communicating partner. For
example, an agent receiving a protocol with the constraint to believe a proposi-
tion p upon being informed of p can infer that the agent sending the protocol
has a particular semantic interpretation of the act of informing other agents of
propositions. ‘⇐’ and ‘⇒’ mark messages being sent and received. On the left-
hand side of the double arrow is the message and on the right-hand side is the
other agent involved in the interaction. ‘⇐’ is a message being received and a
‘⇒’ is a message being sent. After any operation a constraint can be placed upon
that operation.

3.1 Dialogue Game as Protocol

If the dialogue game framework is going to be implemented, agents need to be
able to automatically generate the dialogue types. There is speculation on how
this may be accomplished for each of the dialogue types. It is certainly possible
to formulate an idealisation of each of the individual dialogue types. In an ideal
information-seeking dialogue one agent receives a request for information, and

the agent immediately responds with the requested information. The task then
is to ensure that at any point in this dialogue it will be possible to include any of
the other types of dialogue. In the example shown in section 4, the combination
types are explicitly encoded into the protocol. The dialogue types are encoded as
roles. This creates a modular approach which is in accordance with the spirit of
dialogue game framework. Each important aspect of the dialogue game frame-
work can be addressed by an implementation in the protocol. This will allow
an agent to communicate with other agents that have not been designed with
dialogue games as their communicative model. The rules of the dialogue game
and framework are expressed as a protocol. The agent receiving protocol will be
able to communicate by following the protocol. It does not need to know that
a message it sends follows a certain dialogue game rule. It is only required to
know that the message it sends is appropriate according to the protocol it has
received.

3.2 Components of the Dialogue Game

The five components of a dialogue game are commencement rules, illocutions,
combination rules, commitment rules, and termination rules. All of these com-
ponents can be expressed in the protocol language. However, it will still be nec-
essary for the agents to agree upon a set of illocutions. These rules, expressed
as protocol and sent to an agent to adopt, could be construed as in impediment
to an agent’s autonomy. The protocol and the constraints of the protocol do
not dictate any of the agent’s deliberative processes. The constraints are merely
a means to ensure the agent interaction is consistent. By their interaction in a
multi-agent system, agents willingly sacrifice autonomy in order to gain utility
by following the norms and mores of the system in which it is participating.
Whether these norms are followed by the agent being hard coded by an engi-
neer interpreting a specification or by the agent obeying the constraints of the
protocol makes little difference.

3.3 Layers of the Framework

The three layers introduced in the dialogue game framework are the topic layer,
the dialogue layer, and the control layer. The dialogue layer still exists and
appears as the dialogue clause as the dialogue progresses. The control layer is no
longer necessary. The protocol can be designed so as to allow an agent to refuse
to take up some role in the dialogue.

4 An Example

Two agents, Joe and Doctor Doe, are having a conversation. Joe has a lump,
and asks the doctor what it might be. The diagnosis scene is a good example
where it would be difficult to map out the entire conversation as done with the
EI approach. This interaction would be better suited to a more flexible model of

agent communication such as the dialogue game discussed previously. Before the
doctor agent can provide the answer to Joe’s question, the doctor agent will have
a question of its own. Once Joe provides a response to the doctor’s question, the
doctor can then provide the answer to Joe’s question. This is an example of two
instances of an information-seeking dialogue. The first instance is the Joe agent
seeking the identification of the lump. The second is the doctor agent seeking to
know Joe’s other symptoms, and it is embedded within the first.

4.1 The Example using Mcburney/Parsons Framework

1)Joe:BEGIN(INFOSEEK(Diagnosis))
The agent requests the commencement of an information-seeking type dialogue

about the topic of diagnosis
2)Doctor Doe:AGREE(INFOSEEK(Diagnosis))
The agent Doctor Doe agrees.
INFORMATION-SEEKING Dialogue 1 opens.
3)Joe:REQUEST(lump)
Joe requests the identity of its lump from the Doctor Doe
4)Doctor Doe:PROPOSE-RETURN-CONTROL
Return to CONTROL Layer.
5)Joe:AGREE(RETURN-CONTROL)
6)Doctor Doe:BEGIN(INFOSEEK(Symptoms))
The agent Doctor Doe requests the start of information-seeking dialogue concerning
the topic of symptoms.
7)Joe:AGREE(INFOSEEK(Symptoms))
INFORMATION-SEEKING Dialogue 2 opens, embedded in 1.
8)Doctor Doe:REQUEST(other symptoms)
Doctor Doe asks Joe for other symptoms.
9)Joe:INFORM(other symptoms = itchy,redness)
Dialogue 2 concludes and the conversation returns to the initial
info-seeking dialogue
10)Doctor Doe:INFORM(lump = bug bite)
With this information the agent Doctor Doe can now provide
the information that Joe was seeking.

Fig. 2. The Dialogue Game Framework in Action

An English interpretation will follow certain steps in the dialogue game for
clarity. I have attempted to emulate the style of the example used in [MP02].
Each numbered line in Figure 2 identifies a message passed between the two
agents. Lines 3, 8, 9, and 10 are illocutionary messages and are exactly the same
messages that will be passed between the agents using the protocol. Lines 1 and

2 and Lines 6 and 7 are examples of the conversation at the control level of the
dialogue game framework. There is no line explicitly ending any dialogue with
a END message. This is only necessary if the dialogue is ended prematurely.
One agent suggests a conversation type and topic to undertake and the other
agent, in this example, agrees. This is unnecessary when using the protocol. It is
not assumed that the agent knows about the dialogue types and an agent who
wishes to begin a particular type of dialogue merely makes the first move in
that dialogue type and provides the communicative partner with a copy of the
protocol. This does not mean that the other agent is required to participate in
the dialogue. Lines 4 and 5 in the example show one agent interrupting a dialogue
instance to begin another. This is done by one agent proposing to return to the
control layer. When the protocol is used the combination of dialogue types no
longer has to be proposed. The protocol is designed to explicitly encode these
combinations. A dialogue combination is made simply by taking that route in the
protocol. Whether that agent recognises the move as a dialogue type combination
is left to the designer. Figure 3 illustrates the protocol for a simple information-
seeking dialogue. It allows for two types of dialogue combinations embedding and
iteration. With this protocol it is possible to generate the example in Figure 2.
The agents will initially have the role stated in line one. The role of being part of
an Information seeking dialogue about a proposition p which is related to some
topic. If an agent receives a request for information about p from an agent also
playing an Infoseek role, it follows the protocol branch of line two which has the
agent taking the role of an Infoprovider. If the agent satisfies the constraint on
line 4, i.e. it needs to know something about p, it sends a request about p and
then takes the role of an Infoseeker. After an instance of an information-seeking
dialogue is completed, the agent can start another by retaking the role of Infoseek
stated in line 6. The Infoprovider role is defined at line 7. If the agent knows p,
it sends an inform message to the agent that sent the request. If the agent does
not know p, it then will attempt to redress this by initiating another instance
of an Infoseek (line 9). After which the agent will retake the role of Infoprovider
with respect to the original topic and request for information. It may be that
several iterations of this may occur. For example, Joe’s reply of symptoms could
lead the Doctor to request more information for purposes of clarification, and
it would be necessary to ask another question before an answer to the identity
of the lump could be reached. Once the inform is sent, the Infoprovider role is
finished and the agent would continue through the protocol which would be line
6 in the Infoseek role. The Infoseeker role is similar to the Infoprovider role.
On line 12. The receiving of the inform has a consequence of assert(p). This
states that p is now known by the agent and it becomes common knowledge
the the action of assert. This could be used as an implementation of the shared
commitment store briefly discussed in [MP02].

The dialogue clauses of Figure 4 and Figure 5 are the actual branches the
agents take in the conversation by utilising the protocol defined in Figure 3.
Figure 4 is the dialogue clause for the agent Joe who is seeking to know the
identity of its lump. Figure 5 is the dialogue clause for the agent Doctor Doe,

1)agent(Infoseek(Topic,P),Id)::=
2) (request(P) ⇐ agent(Infoseek(Topic,P),Cid) then
3) agent(Infoprovider(Topic,P),Id)) or
4) (request(P) ⇒ agent(Infoseek(Topic,P),Id) ← needtoknow(p) then
5) agent(Infoseeker(Topic,P),Id)) then
6)agent(Infoseek(Topic’,Q),Id).

7)agent(Infoprovider(Topic,P),Id)::=
8) inform(P) ⇒ agent(Infoseeker(P),Cid) ← know(P) or
9) (agent(Infoseek(Topic”,R))then
10) agent(Infoprovider(Topic,P),Id)).

11)agent(Infoseeker(Topic,P),Id)::=
12) inform(P) ⇐ agent(Infoprovider(Topic,P),Pid) → assert(P) or
13) (request() ⇐ agent(Infoseeker(,),Pid) then
14) agent(Infoseek(Topic,)) then agent(Infoseeker(Topic,P),Id)).

Fig. 3. Information-seeking protocol

who before it can identify Joe’s lump, it need to know its other symptoms. As
the conversation routes are explored the dialogue clause is appended. Each new
step added to the dialogue clause is the actual step taken by the agents following
the protocol that is passed between them.

agent(Infoseek(Diagnosis,lump),Joe) ::=
request(lump) ⇒ agent(Infoseek(Diagnosis,lump),Doctor Doe) then
agent(Infoseeker(Diagnosis,lump),Joe) ::=
request(other symptoms) ⇐
agent(Infoseek(Symptoms,other symptoms),Doctor Doe) then

agent(Infoseek(Symptoms,other symptoms),Joe) ::=
agent(Infoprovider(Symptoms,other symptoms),Joe) ::=
inform(other symptoms = itchy, redness) ⇒

agent(Infoseeker(Symptoms,other symptoms),Doctor Doe) then
agent(Infoseeker(Diagnosis,lump),Joe) ::=
inform(lump=bug bite) ⇐ agent(Infoprovider(Diagnosis,lump)).

Fig. 4. Doctor-patient dialogue clause(Joe)

agent(Infoseek(Diagnosis,lump),Doctor Doe) ::=
request(lump) ⇐ agent(Infoseek(Diagnosis,lump),Joe) then
agent(Infoprovider(Diagnosis,lump),Doctor Doe) ::=
agent(Infoseek(Symptoms,other symptoms),Doctor Doe) ::=
request(other symptoms) ⇒
agent(Infoseeker(Symptoms,other symptoms),Joe) then

agent(Infoseeker(Symptoms,other symptoms),Doctor Doe) ::=
inform(other symptoms = itchy, redness) ⇐
agent(Infoprovider(Symptoms,other symptoms),Doctor Doe) then

agent(Infoprovider(Diagnosis,lump),Doctor Doe) ::=
inform(lump=bug bite) ⇒ agent(Infoseeker(Diagnosis,lump)).

Fig. 5. Doctor-patient dialogue clause(Doctor Doe)

5 Conclusions and Observations

The use of the protocol is not seen as a replacement for either the dialogue game
approach or Electronic Institutions. Its purpose is to bridge the implementation
gap which exists. Dialogue Game frameworks, though rich in formal definition,
lack a practical implementation. Electronic Institutions are an excellent model
for implementation but its static state-based approach to agent conversations
limit it to simple domains with small conversation spaces (e.g. auctions). By
mediating between the two, the protocol described in the paper gains benefits
from both approaches. The protocol language borrows several concepts from
Electronic Institutions. EIs, through implementations and formal definitions,
have been shown to be a solid approach to open multiagents systems. The pro-
tocol’s distributed nature and run-time execution allows it to avoid some of the
shortcomings of EIs. Encoding the dialogue game framework into a protocol
allows an agent to use a very expressive model of agent communication with-
out the drawback of depending on other agent designers to fully comply with
the numerous(i.e. commencement, termination, combination, commitment) rules
associated.

The protocols usefulness is not limited to implementing dialogue games or
the McBurney/Parsons framework. A small scheduling program has been de-
veloped using the protocol written in Prolog and using LINDA. A Java-based
agent framework also exists which uses an XML representation of the proto-
col. Separating the protocol from the deliberative and communicative models of
agency makes definition and verification simpler tasks. Tools have already been
developed which use model-checking for automatic verification. Work is also
under-way to create a full implementation of the ideas presented in this paper.
It includes all the atomic types of dialogue as well as the various combinations
considered in the formal framework. There are a few issues that still need to be
addressed. Such as the concern that the volume of data being exchanged could
be a hindrance to this approach. Implementations using the protocol have been

created and this particular concern has not been a problem. That is not to say
there is no place for optimisation, such as determining the minimal message that
can be sent between agents.
This paper has shown that the distributed protocol language described is

expressive enough to represent one of the more popular communicative models
of agent research. This is done in such a way that an agents could communicate
by using the protocol and not relying on agent’s to share that communicative
model.

References

[ERAA+00] Marc Esteva, Juan A. Rodrguez-Aguilar, Josep Ll. Arcos, Carles Sierra,
and Pere Garcia. Institutionalising open multi-agent systems. In pro-
ceedings of the Fourth International Conference on MultiAgent Systems
(ICMAS’2000), pages 381–83, Boston, 2000. ICMAS.

[ERS+01] Marc Estava, J. A. Rodriguez, Carles Sierra, P. Garcia, and J.L. Arcos. On
the formal specifications of electronic institutions. LNAI, pages 126–147,
2001.

[FIP01] FIPA. FIPA communicative act library specification,
http://www.fipa.org/specs/fipa00037/XC00037H.html, 2001.

[MP02] Peter McBurney and Simon Parsons. Games that agents play: A formal
framework for dialogues between autonomous agents. Journal of Logic,
Language and Information, 11(3):315–334, 2002.

[Ree98] Chris Reed. Dialogue frames in agent communication. In Y. Demazeau,
editor, Proceedings of the Third International Conference on Multi-Agent
Systems(ICMAS-98), pages 246–253. IEEE Press, 1998.

[Rob03] Dave Robertson. Distributed agent protocols. Technical Report contact
author for details(dr@inf.ed.ac.uk), University of Edinburgh, 2003.

[WK95] Doug Walton and Eric C. W. Krabbe. Commitment in Dialogue: Basic
Concepts of Interpersonal Reasoning. SUNY press, Albany, NY, USA,
1995.

[WR02] Chris Walton and Dave Robertson. Flexible multi-agent protocols. Tech-
nical Report EDI-INF-RR-0164, University of Edinburgh, 2002.

