
Matchmaking and Brokering Multi-Party Interactions Using Historical
Performance Data

Registration number #601
�

Abstract

Matchmaking and brokering will be a crucial component
of future agent and agent-like systems, such as the seman-
tic web. Most research on matchmaking has been directed
toward sophisticated matching of client requirements with
provider capabilities based on capability descriptions. This
is a vital mechanism for conducting matchmaking, but ig-
nores the likelihood that in practice, and for various rea-
sons, capability descriptions will not fully characterisethe
interaction behaviour of agents.

This problem is further compounded in systems with
many interacting agents, all of which have idiosyncrasies.
As in everyday life, some groupings of agents will be more
effective than others, regardless of their individual compe-
tencies or suitability to the task. The quality of the interac-
tion between agents is a crucial factor.

Using the incidence calculus and the lightweight
coördination calculus, we show that we can easily im-
plement matchmaking agents that will learn from experi-
ence how to select those groups known to inter-operate
well for particular purposes.

1. Introduction

The issue of matchmaking is key to the deployment of
many types of multi-agent system [1]. It first appeared as a
research problem at the dawn of agent systems [2], and has
resurfaced as a fundamental problem in newer areas like the
semantic web and Grid computing.

Most of the previous research into agents has ad-
dressed interactions with only two-parties, service
-requester and -provider. This bias continues on the seman-
tic web. OWL-S [3], for instance, imagines that any inter-
action will be principally two-party, despite the presence
of thehasParticipants slot, which is under-specified
and unused. One can imagine interactions that are in-
herently multi-agent and which would thus require any

� The primary author is a student.

matchmaker to find an appropriatesetof agents. Indeed, re-
cent developments in web services choreography [4] reveal
the growing realisation that many real-world processes re-
quire multiple participants.

The technique presented here developed from work on
the lightweight coördination calculus (LCC) [5], a language
for describing multi-party dialogues, where we found it nec-
essary to provide a middle-agent to supply collaborators for
the fulfilment of protocols.

We do not commit to any particular deployment envi-
ronment. While we have implemented it forLCC, we be-
lieve the approach would have value any setting where ser-
vice capabilities are specified in a flexible, semantic encod-
ing. Consequently, we see applications not only inMAS, but
on the Grid [6] and semantic web, and in work-flow and
peer-to-peer systems.

The remainder of this paper is organised thus: We first
examine the problem in greater detail in section 2, before
introducing the two key ideas we use to tackle it — the
lightweight coördination calculus and the incidence calcu-
lus — in section 3. Section 4 shows how we use the inci-
dence calculus to select an appropriate team of agents for
a task. Section 5 surveys related work, and section 6 con-
cludes.

2. Motivation or Three is not a crowd

The motivation for matchmaking and brokering is clear:
in any environment with large numbers of agents, the only
feasible mechanism for connecting those requesting a ser-
vice with those willing to provide it is via middle agents
[1,7]. However, most previous work has examined only the
case of selecting a single agent (or in some cases, a range of
agents, leaving the final selection of the agent to the client)
for a single role. To our knowledge, [8] is the only excep-
tion.

While current interactions are primarily client-server, we
can imagine a future where matchmade agent interactions
are more distributed, involve many agents, and operate in
a more peer-to-peer manner (i.e. have a less hierarchical
structure). It can be expected that these newer forms of di-
alogue will make even greater use of, and demands upon,

matchmaking services than do current modes of employ-
ment.

2.1. Capability description is not enough

In [8] the assumption is that agent implementations
would vary in theirintrinsic ability to complete a task, even
if the task were completely specified and accurately adver-
tised. We adopt this view, and extend it: we think that, as
well as the agent’s inherent talent at a task, there is also rea-
son to believe that issues of ontological mismatch and
other ‘social’ effects will reduce the efficacy of purely log-
ical agent capability descriptions. Regardless of how care-
fully service providers specify the behaviour of their
systems, there will always remain some level of ‘se-
mantic slack’ such that matchmaking based on purely
semantic service description can be improved by statisti-
cal or other learning techniques. In these circumstances,
an approach like ours would be beneficial. Below, we ex-
amine several reasons for this encoding gap. Note that
only the first is a technical problem: the rest cover sce-
narios where additional semantic information could be
embedded in profiles but is not for non-technical rea-
sons.

The capability description language lacks expressiveness.
This does not imply a criticism of the language: it is unrea-
sonable to expect any general purpose capability description
language to allow the communication of arbitrarily complex
constraints in every imaginable domain. However, it would
frequently be possible for matchmakers, especially domain-
specific ones, to discover such constraints.

User ignorance of ability of the language to express a con-
straint, or of the effect of declaring the constraint.As con-
straints become more complex, and services more common,
it becomes increasingly likely that a user would be unaware
of her ability to aid the matchmaker.

User expectation that the information will not be used by
clients or matchmakers.In an negative example of ‘early-
adopter syndrome’, it is not unreasonable to expect service
providers will refrain from supplying this kind of data un-
til they observe a significant portion of the agent ecosystem
using it.

Not wanting to express particular information.In some in-
stances, there is an incentive for service providers to keep
the description of their services as general as possible,
though not to the extent of attracting clients they has no pos-
sibility of pleasing. Alternatively, the provider may not wish
to be terribly honest or open about her service’s foibles.

The inter-relationship is not known to the service provider.
Some of the dependencies may be extremely subtle, or sim-
ply not obvious.

Comprehensive constraints too expensive to generate or
use. Even if none of the above hold, it would often sim-
ply not be worthwhile for the service provider to analyse
and encode the information. Further, in the case of web, se-
mantic web and Grid services, it is reasonable to expect
that users are discouraged by standards flux from invest-
ing much time in this endeavour.

But what underlying causes are there for these problems
that are so difficult to encode? Below are some reasons why
such issues might arise:

‘Social’ reasons.For instance, different social communi-
ties, or communities of practice, may each cluster around
particular service providers for no particular reason, yet
this would result in improved performance on some tasks
if agents were selected from the same social pool.

Strategic (or otherwise) inter-business partnerships.For
example, an airline may have a special deal with other air-
lines or car-hire companies that would lead to a more satis-
fied customer.

Components designed by same group.Organisations that
seem to have nothing in common may well be using soft-
ware created by a single group. Such software would be
more likely to inter-operate well than software from oth-
ers.

Different groups of engineers held differing views of a prob-
lem, even though the specification is the same.Thus, the
implementations are subtly incompatible, or at least do not
function together seamlessly.

Particular resources or constraints shared between
providers. For example, in a Grid environment, a compu-
tation server and a file store might share a very high band-
width connection, leading to improved service. This partic-
ular case underlies our example scenario, detailed in figure
3.

3. Technical preliminaries

Our matchmaker relies on two techniques developed pre-
viously: the lightweight coördination calculus, and the inci-
dence calculus. We briefly explain these here.

3.1. Lightweight cöordination calculus

The lightweight coördination calculus (LCC) [5] is a
method for specifying agent interaction protocols. A gener-
alisation of the Electronic Institutions [9] model, it is based
on process calculi, specificallyCCS [10]. It provides a sim-
ple message passing framework (denoted� for sending,
and� for receiving) with the operators���� (sequence),�� (choice), 	
� (parallel execution), and� (if). The
grammar is shown in figure 1. AnLCC protocol framework

Figure 1: Grammar for theLCC dialogue framework� �� �� �� ��� � ����� � � ������� ����� ��� ����� �� �!����� ��� � "#��� � $ %& �! ��� ����� ' (������ ' �! �)�� �! ' �! � �! ' �! * � �!(����� � ��� (+ ����� ' (+ ����� , � '(- ����� ' � , (- ������ ��� . �� ' � / � ' � 0 �#��� ��� . ��$ % ��� . ��(��� . ��

is interpreted in a logic-programming style, using unifica-
tion of variables which are gradually instantiated as the con-
versation progresses. Along with the dialogue framework,
which specifies the various messages that can be transmitted
and when, a protocol carries ‘common knowledge’, which
is simply data, specific to a conversation, that every partici-
pant in the dialogue can access, and modify.

This style of protocol definition is flexible, and allows
us to easily capture, and perform matchmaking for, multi-
agent interactions, the primary contribution of our this pa-
per. Conveniently,LCC allows us to use the same language
to express various degrees of decentralisation. For exam-
ple, we can convert a protocol from one in which the
middle-agent functions as a broker (routing all communi-
cation through itself, delivering only the final result to the
client), to a matchmaker (once the middle-agent has identi-
fied agents for the required roles, it informs the client of the
decisions and plays no further part in the protocol’s execu-
tion).

The protocols can be created dynamically, but for this pa-
per we choose to situate the matchmaker system in an envi-
ronment where a library of standard protocols exists. Each
protocol functions as a pre-defined plan. An agent, wish-
ing to accomplish some task (such as creating an auction,
or calling a meeting, finding participants, and arranging a
mutually suitable time) will select a protocol from a library,
and ask its matchmaker to suggest service-provider agents
for each role. In some sense, each role is equivalent to an
atomic service capability, although a role carries also there-
sponsibility of participating in a specific pattern of on-going
conversation.

3.2. Incidence calculus

The incidence calculus [11] is a truth-functional proba-
bilistic calculus in which the probabilities of composite for-
mulae are computed from intersections and unions of the
sets of worlds for which the atomic formulae hold true,
rather than from the numerical values of the probabilities of

their components. The probabilities are then derived from
these incidences. The rules are given in figure 3.2. In gen-
eral,	 12 3 4 5 67 	 125 8 	 14 5. This fidelity is not possible
in probabilistic logics, where probabilities of compositefor-
mulae are derived only from the probabilities of their com-
ponent formulae. In the incidence calculus, we return to the
underlying sets of incidences, giving us more accurate val-
ues for compound probabilities. The conditional probabili-
ties of incidences drive our matchmaking, as we see in the
next section.

Figure 2: Incidence calculus rules9 ": & �
a
��� � �%� 9 "; & � <=9 ">?& � 9": &@9 "? &9 "? / A & � 9"? & B 9 "A & 9 "? 0 A & � 9"? & C 9 "A &9 "? D A & � 9">? 0 A & � "9 ": &@9 "? && C 9 "A &

Probabilities are derived from incidences thus:* "E& � FG HIJ FFG HK J F * "E 'L & � FG HIMN J FFG HN J F

As an example, consider the following set of incidences
describing the weather in a given week:9 ": & � <� �� � ��� � � �% � �)� � ! 9 � ��� � ��� =9 "�9� & � <� �� � � �% � �)� � ! 9 � ��� � ��� =9 "� 9�%& � <� �� � �)� � ! 9 � ��� =9 "��� & � <��� � � �% � ��� � ��� =9 "���� & � <���=9 "�9� / ��� & � 9 "�9� & B 9 "��� & � <� �% � ��� � ��� =9 ">�9� 0 ���� & � 9 ">�9� & C 9 "���� & � <��� � ���=

To illustrate the computation of probabilities of com-
pound formulae from the incidences, note that the proba-
bilities of O P�Q andRS� are bothTU , but their conjunctions
with �
P� (probability VU) are different, atTU and WU respec-
tively.

The incidence calculus is not frequently applied, since
one requires exact incident records to use it. For the ap-
plication at hand, however, we have detailed information
about each matchmaker invocation, and the calculus pro-
vides a simple, intuitive way of dealing with the problem.
More powerful mechanisms exist in the calculus for deal-
ing with situations where knowledge is incomplete, though
we do not exploit them in this paper.

4. The LCC matchmaker

In usingLCC for matchmaking, we must ask how we ar-
rive at a protocol. A client agent has a task or goal it wishes
to achieve. Using either a pre-agreed lookup mechanism, or
by reasoning about the protocols available, the agent will se-
lect a protocol: more than one might be suitable. This done,
it must recruit a matchmaker to propose other agents to fill
the various roles in the protocol. These other agents we term
‘collaborators’ and denoteX�Y 1Z �Y� [\] ���^ Q5.

The success of a protocol and the particular team of col-
laborators is decided by the client: on completion or failure
of a protocol, the client informs the matchmaker whether
the outcome was satisfactory to the client.

Each completed brokering session is recorded as an inci-
dent, represented as an integer. Our propositions are ground
predicate calculus expressions, e.g.�S�X�_ � 1] ��Q5,X�Y 1`
�a [XP�P`
�a 5. Each proposition has an associated
list of worlds (incidents) for which it is true. For our ex-
ample scenario (see figure 3), the database might look like
this:b cdeef gheij k lm k W k n n n k Wopqb crh gsgtge c

BLACK HOLE SEARCHq k lm k W k n n n k Wopqb cgustgv w cx ggiq k lm k W k y k T k V k mz k mm k mW k mV k WW k Wy k WTpqb ctge cdjsh g{gv| idsd}djw k ~wt~q k lm k W k y k T k o k V k U k � k �pqb ctge cdjsh g{gv| idsd}djw k �wh jt�weq k lmz k mm k mW k my k mT k mo k mV k mUpqb ctge cdjsh g{gv| idsd}djw k x h ww{f bt�q k lm� k m� k Wz k Wm k WW k Wy k WT k Wopqb ctge c}edt~ �gew � b{iwh k utji jijtq k lm k W k y k T k mz k mm k mW k my k m� k m� k Wzpqb ctge c}edt~ �gew � b{iwh k u~ �r t�q k lo k V k U k mT k mo k Wm k WW k Wypqb ctge c}edt~ �gew � b{iwh k }dh tweg{d jtq k l� k � k mV k mU k WTpqb ctge c� bjudeb� wh k {tjdq k lm k W k n n n k Wopq
For instance, the Barcelona supercomputer is rarely suc-

cessful:9 "��� "�����)��� ! 9�%� � �� ������ ��& / ������ �"���%&& � <��=
not because it is a worse supercomputer thanUCSD-SDSC

or UK-HPCX, but because its connection to the available
databases is limited.

Initially, the database is empty, and the broker selects
agents at random. As more data is collected, a threshold is
reached, at which point the matchmaker begins to use the
probabilities.

4.1. Algorithms

We have developed three algorithms for choosing agents,
though others are possible. The first, calledMATCHMAKE -
JOINT, fills all the vacancies in a protocol at the outset. It
works by computing the joint distribution for all possible
permutations of agents in their respective roles, selecting
the grouping with the largest probability of a good outcome.

Figure 5:MATCHMAKE -JOINT

Extract the roles required in the protocol� . Compute the
joint distribution for all agent permutations for these roles.
Select the agent set with greatest likelihood of success.

In logic terms,MATCHMAKE -JOINT for our Grid exam-
ple looks like this:�����%���������� � "� � � � #& �<��� "

astronomydatabase
� � &/��� "�����)��� ! 9�%� � � � � &/��� "� 9����9� � � � &=9!� � * "��� "��� ����� %������� � � &/��� "�����)��� ! 9�%� � �� � &/��� "� 9����9� � � � & / ������ � "� ��%& '* ������ "

BLACK HOLE SEARCH
&&��% � 9� � ��9� 9��%

The second approach,MATCHMAKE -INCREMENTAL, is to
select only one agent at a time, as required by the executing
protocol. This is done by the matchmaker on demand. The
various agents already engaged in the protocol, on needing
to send a message to an as-yet-identified agent, will ask the
broker to find an agent to fulfil the role at hand.

Figure 6:MATCHMAKE -INCREMENTAL

Compute probability of successful outcome for each agent
available for roleZ given� , the collaborators chosen so far.
Select most successful agent.

To illustrateMATCHMAKE -INCREMENTAL, imagine the
workflow scenario. At first, Astrid must ask the matchmaker
to fill the black hole finderrole. The�� � agent’s first ac-
tion is to request the data file from an astronomy database.
It therefore returns the protocol to the matchmaker, which
selects theastronomydatabasemost likely to produce suc-
cess, given that theblack hole finder is already instantiated
to �� � .� � * "��� "

astronomydatabase
� � & / ������ �"���%& '* ������ "

BLACK HOLE SEARCH
& / ��� "

black hole finder
� � � � &&

The final method,MATCHMAKE -TREE is a mix of the first
two. Like MATCHMAKE -JOINT, it runs only once, before
the protocol executes. LikeMATCHMAKE -INCREMENTAL,
it selects only one agent at a time (that is, when a message is
sent). This seeming paradox is resolved by considering that
MATCHMAKE -TREE walks through the protocol, exploring
each possible branch, and selecting an agent when neces-
sary in the same manner asMATCHMAKE -INCREMENTAL.
This tree of possible choices can be stored with the proto-
col that is sent to the client, and consulted as required.

All three algorithms support the pre-selection of agents
for particular roles. An example of this might be a client
booking a holiday: if it were accumulating frequent flyer
miles with a particular airline, it could specify that airline be
used, and the matchmaker would work around this choice).
This mechanism also allows us to direct the matchmaker’s
search: selecting a particular agent suggests that the client
wants similar agents, from the same social pool, for the
other roles, e.g. in a peer-to-peer search, by selecting an
agent you suspect will be helpful in a particular enquiry, the
broker can find further agents that are closely ‘socially’ re-
lated to that first one.

4.2. Discussion

Having described the three algorithms, we must decided
which to use, and when.MATCHMAKE -JOINT is preferable
when one wishes to avoid multiple calls to the matchmaker,
either because of privacy concerns, or for reasons of com-
munication efficiency.

Figure 3: Astronomy workflow scenario withLCC dialogue framework
We take a hypothetical Grid workflow for our example scenario. We name this protocolBLACK HOLE SEARCH. Astrid, our
R�����_ ��, is attempting to find and visualise a suspected black hole ina region of space around Cygnus-X1. The volumi-
nous data about this segment of space is kept in the very largefile cygnusx1, which is stored at numerous repositories, all
of which can fill the roleastronomydatabase. She uses a computational intensive service calledblack hole finder to actu-
ally determine if there is a black hole present. Theblack hole finder, if successful, will send the data (now refined and sig-
nificantly smaller) to a visualisation service, which will pass the final image to Astrid. The variables\� , �� � , and�
represent the systems providing the services. Each of thesewill be selected by the matchmaker when the protocol is exe-
cuted.
The conceit on which this example hangs is that network bandwidth between various pairs ofblack hole finderandastron-
omydatabasewill be different, largely unknown to the persons providingthe individual services, and hencenot declared to
the matchmaker. Since the filecygnusx1 is particularly large, this network bandwidth is likely to be a strong determiner of
the satisfaction of Astrid.� "��� ���� � "� 9��& � � ������ � & �� ��� �) "� 9��& + � "�����)��� ! 9�%� � �� � & �)��� ������� - � "�����)��� ! 9�%� � �� � & �)�����9� � � 9����9���9�� ".)9�� � � & , �9����9�9�� ".)9�� & - � "� 9����9� � � � & ��! �9��% - � "�����)��� ! 9�%� � � � � &

� "�����)��� ! 9�%� � �� � & �� ��� �) "� 9��& - � "��� ���� � "� 9��& � � �� ���� � & �)��
g
 9% ! �* � �� "� 9��& + � "��� ����� %������� � � & �)��� ¡ g

 9% ! �* ���� "� 9��& - � "��� ���� � %������� � � & �)��������� + � "��� ���� � � ��� ���� � &, �����)��� * ����� "� 9�� �� ����)���& �)���9����9� � "� ����)��� � � ������ � & + � "� 9����9� � � � &
¢£¤�! �9��% + � "������� � "� 9��& � � �� ���� � &

� "��� ���� � %������� � � & ��
g
 9% ! �* � �� "� 9��& - � "�����)��� ! 9�%� � �� � &

g
 9% ! �* ���� "� 9��& + � "�����)��� ! 9�%� � �� � & , �9% ! �* ���* ����% "� 9�� � � &

� "� 9����9� � � � & �� � 9����9� � ".)9�� � � �9���& - � "¥ � #�¦����� & �)���9����9�9�� ".)9�� & + � "¥ � � �9���& , ��� � � 9����9���9�� ".)9�� � � �9���&
Note thatLCC is being used only to coördinate the interaction: when domain-specific protocols, such as GridFTP, are avail-
able and more appropriate, they are used to perform the heavylifting.

MATCHMAKE -INCREMENTAL and MATCHMAKE -TREE

would probably be more suitable in protocols where many
roles go unfilled: total work on the broker would be reduced,
and the results would probably be at least as good as for bro-
kering all agents. Such a protocol, in which many roles are
never used, could be viewed as a superclass of a set of more
specific protocols: the matchmaker would then be determin-
ing the particular type at run-time, and select the optimal set
of agents for that subtype.

One cannot determine in general which of the two so-
lutions would provide the optimal selection of agents.
MATCHMAKE -JOINT appears to provide the ‘optimal’ so-
lution, but there are some issues with it. The most im-
mediate is that, unlikeMATCHMAKE -INCREMENTAL and
MATCHMAKE -TREE, agents can be unfairly black-balled
for ‘under-performing’ in unsuccessful protocols in which
they never actively participated. Secondly, we hope to
add backtracking toLCC, such that we might undo cer-
tain agent selections: this is not possible if all roles are
filled at the outset.

4.3. Implementation

The broker is currently implemented in Prolog. Perfor-
mance, even in a naı̈ve implementation, is adequate for tens
of thousands of records, and well within the time frame that
would be expected on the Internet.

4.4. Inherent difficulties in the problem

We note here two significant problems that seem to be in-
escapable issues intrinsic to the problem: trusting clients to
report honestly and in a socially ‘normal’ manner the out-
come of protocol executions; and the problems of locating
mutually co-operative agents in a large society.

Since individual client agents are responsible for the as-
signing of success metrics to matchmakings, there is scope
for agents with unusual criteria, or downright malicious in-
tentions, to soil the database.

Matchmaking is a social activity: clients wish to com-
municate with service providers that, by definition, they are
unaware of. It is unclear how this aspect of agency will de-
velop, and it will depend in many respects on companies’
economic decisions, and the behaviour of individuals as to

Figure 4: Rewrite rules governing matchmaking for anLCC protocol
These rewrite rules constitute an extension to those described in [5]. A rewrite rule? §¨ ©§ ª ©« ©¬ © © ®¯̄ ¯¯̄ ¯¯¯¯¯¯̄ D A
holds if ° can be rewritten to± where:² b are the available messages before rewriting;²g are the messages available after
the rewrite;� is the protocol;³ is the message produced by the rewrite (if any);� is set of collaborators before the rewrite;
and� ´ (if present) is the—possibly extended—set of collaborators after the rewrite.� is a set of pairs of role and agent name,
e.g.µX�Y 1
R�����_ ¶ Q
�
`
R� [] ����O PX�5 [X�Y 1`Y
Xa ��Y� · P�Q�� [SXRQ RQRX5¸)� �� � §¨ ©§ ª ©« © ©¬¯̄ ¯¯¯¯¯¯̄ D̄ � �� ¹ 9! � §¨ ©§ ª ©« © ©¬¯̄ ¯¯¯¯¯¯̄ D̄ ¹� º � � » § ¨ ©§ ª ©« © ©¬¯̄ ¯¯¯¯¯̄ ¯ D̄ ¹ 9! >�����% "� » & / � º § ¨ ©§ ª ©« © ©¬¯̄ ¯¯̄ ¯¯¯¯ D̄ ¹� º � � » § ¨ ©§ ª ©« © ©¬¯̄ ¯¯¯¯¯̄ ¯ D̄ ¹ 9! >�����% "� º& / �» § ¨ ©§ ª ©« © ©¬¯̄ ¯¯̄ ¯¯¯¯ D̄ ¹� º �)�� � » § ¨ ©§ ª ©« © ©¬¯̄ ¯¯¯̄ ¯¯¯ D̄ ¹ �)�� � » 9! � º §¨ ©§ ª ©« © ©¬¯̄ ¯̄ ¯¯¯¯¯̄ D ¹� º �)�� � » § ¨ ©§ ª ©« © ©¬¯̄ ¯¯¯̄ ¯¯¯ D̄ � º �)�� ¹ 9! �����% "� º& / ���������� � "� º& � � ¼ / � » §¨ ©§ ª ©« © ® ©¬¯̄ ¯¯̄ ¯¯¯¯ D̄ ¹� º * � � » § ¨ ©§ ª ©« © ©¬ ½¾¬¿¯̄ ¯¯¯¯¯¯̄ ¯¯¯¯ D̄ ¹ º * � ¹ » 9! � º §¨ ©§À ©« © ©¬ ½¯̄ ¯¯¯¯¯¯̄ ¯ D̄ ¹ º / �» §À ©§ª ©« © ©¬¿¯̄ ¯¯¯¯¯¯̄ ¯ D̄ ¹»� , (- � §¨ ©§ ¨ ÁÂ§ ÃÄÅ©« © ©Æ¯̄ ¯¯¯̄ ¯¯¯¯¯̄ ¯¯¯ D̄ � "(- � � � & 9! "(- �& Ç (G / ���9�! � "� &(+ � , � §¨ ©§ ¨ ©« © © ® ©Â§ ÈÄÅ¯̄ ¯¯¯¯¯̄ ¯¯¯¯¯¯̄ D̄ � "(+ � �� ¼ & 9! ���9�! 9�% "� & / � ¼ � �����%���������� � "� � � � ��� "� &&�� �� , � §¨ ©§ ¨ ©« © ©Æ¯̄ ¯¯̄ ¯¯¯ D̄ � "�� �� � � & 9! ���9�! 9�% "� &� "# � $ & , � §¨ ©§ ª ©« © ©Æ¯̄ ¯̄ ¯¯¯¯ D̄ � "# � $ & �� � 9! ������ "� � � � � "# � $ & �� � & / ���9�! 9�% "� &���������� � "� ". �� � � && � ����������� � "� º �)�� � » & � ���������� � "� º& C ���������� � "� » &���������� � "� �� � & � ���������� � "� & C ���������� � "� &
We can capture our various algorithms for matchmaking usingthe same rewrite rules: the issue iswhenthe set of collabo-
rators is actually decided.�É���QX�YY
`��
��� R determines the selection of a new agent: it is the matchmaking function. It
varies slightly, depending on the exact matchmaking algorithm in use. By using the same rewrite rules regardless of the match-
making policy, we make it easier to re-use model-checking [12] and other tools on the protocols.

how many agents are deployed. There is a spectrum of pos-
sibilities, ranging from areas that are dominated by their
500lb gorillas (Google, Amazon, and E-Bay) through those
that have dozens or hundreds of providers (insurers), to mil-
lions (personal calendar agents). We suppose that there will
be a mix, and would presume that, for most purposes where
one would use a matchmaker, we would be dealing with
roles that supported numbers toward the lower end of the
scale. Further, we must ask how many service types will
be provided. Again, in each domain, we might have a sim-
ple, monolithic suck-it-and-see interface (Google again), or
an interface with such fine granularity that few engineers
ever fully understand or exploit it. Here, it is perhaps harder
to predict the numbers.

While our technique handles large numbers of inci-
dences, it does not scale for very large numbers of agents
or roles. For any protocol with a set of rolesZ , and with
each role having	 ��Ê PQ��R 1�b 5 providers, the number of
ways of choosing a team isËÌ¨ ÍÎ * �� 9%� � "G &
This is an insuperable problem when considering large

numbers of agents. No matchmaking system could possi-
bly hope to discover all the various permutations of agents,
although more sophisticated machine learning techniques

might be helpful in finding non-obvious groupings of agents
that simply could not be found by trial-and-error. How much
of an issue this actually becomes in any particular domain
will be heavily influenced by the outcomes to the issues dis-
cussed above.

5. Related work

The brokering problem arises in agent systems, seman-
tic web, and grid environments. The matchmaking problem
is discussed in [1, 13, 7]. We consciously ignored methods
like those found in [14], though they would be crucial in
any real-world deployment: we believe our technique would
usefully augment such systems, and we intend to fuse the
two approaches.

Our problem conception—matchmaking multiple roles
for the same dialogue—appears novel in the matchmaking
literature. Our use of performance histories is predated bya
similar approach found in [8], although that, again, only ex-
amines the case of two-party interactions.

Finally, our take on the likelihood of roles being success-
fully discharged is comparable with some views of trust.

6. Conclusion and future work

We have shown that, in plausible scenarios, the success-
ful completion of a task may depend not only on the ad-
vertised abilities of agents but on their collective suitabil-
ity and inter-operability. We presented a simple, but effec-
tive, technique for detecting successful groupings of agents.
We highlighted the intractability of the problem in envi-
ronments with large numbers of available provider agents
and/or roles.

Despite talk of disintermediation and peer-to-peer sys-
tems, multi-agent scenarios that are amenable to matchmak-
ing seem sparse. Typically, multi-party scenarios, where
they do exist, have a client, a central service which does
the matchmaking itself—one example is a travel agent ser-
vice which arranges the various flight, car-hire, hotel book-
ings etc, without consulting a general purpose matchmaker.
This paucity may be due to the emergence only recently of
formalisms that can express such interactions easily, or it
may reflect a deeper problem with conceiving problems in
such a distributed sense, as we assumed here. A standard li-
brary of such interactions would be helpful to research in
the field.

Currently, only assignments of agents to roles are
recorded. The utility of recording other events in the ex-
ecution of the protocol will be investigated. For instance,
‘partially satisfactory’ protocol executions could be inter-
rogated to discover which agents are performing well, and
which are proving to be a bottle-neck. Providing richer
feedback from the client on its satisfaction with the out-
come would be useful in itself. This could be extended to
treating matchmaking as an interactive process: an agent re-
questing a service to satisfy a task might have various
information that, unbeknownst to it, could aid the match-
making in ascertaining the best protocol and collaborators
to use. We also ignore issues of ontological compatibil-
ity and alignment. More sophisticated techniques for infer-
ring compatibility will be examined, including those such
as [14].

Previous work onLCC has examined the possibility of
backtracking in protocols, in this case, allowing the broker
to re-choose providers if an interaction failed. This wouldbe
easy for interactions, such as information gathering, where
no commitments are made, but would require careful con-
sideration of actions and state in, for example, a purchasing
environment.

Finally, although the incidence calculus provides a con-
venient framework for this model, it may not provide us
with an optimal computational process. The use of machine
learning techniques will be investigated.

References

[1] Decker, K., Sycara, K., Williamson, M.: Middle-Agents for
the Internet. In: Proceedings of the 15th International Joint
Conference on Artificial Intelligence, Nagoya, Japan (1997)

[2] R. G. Smith: The contract net protocol: high-level commu-
nication and control in a distributed problem solver. (1988)
357–366

[3] Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott,
D., McIlraith, S., Narayanan, S., Paolucci, M., Parsia, B.,
Payne, T., Sirin, E., Srinivasan, N., Sycara, K.:OWL-S 1.1
(2004)

[4] Kavantzas, N., Burdett, D., Ritzinger, G., Lafon, Y.: Web
Services Choreography Description Language Version 1.0
(2004) W3C Working Draft 12 October 2004.

[5] Robertson, D.: A lightweight method for coordination of
agent oriented web services. In: Proceedings of the 2004
AAAI Spring Symposium on Semantic Web Services, Cali-
fornia, USA (2004)

[6] Blythe, J., Deelman, E., Gil, Y.: Planning for workflow con-
struction and maintenance on the Grid. In:ICAPS03 work-
shop. (2003)

[7] Klusch, M., Sycara, K.: Brokering and matchmaking for
coordination of agent societies: a survey. In: Coordination
of Internet agents: models, technologies, and applications.
Springer-Verlag (2001) 197–224

[8] Zhang, Z., Zhang, C.: An improvement to matchmaking al-
gorithms for middle agents. In: Proceedings of the first inter-
national joint conference on Autonomous agents and multia-
gent systems, ACM Press (2002) 1340–1347

[9] Esteva, M., Rodriguez, J., Arcos, J., Sierra, C., Garcia, P.:
Formalising Agent Mediated Electronic Institutions (2000)

[10] Milner, R.: Communication and Concurrency. Prentice Hall
(1989)

[11] Bundy, A.: Incidence calculus: A mechanism for probabilis-
tic reasoning. Journal of Automated Reasoning1 (1985)
263–284

[12] Walton, C.: Model Checking Multi-Agent Web Services. In:
Proceedings of the 2004AAAI Spring Symposium on Se-
mantic Web Services. (2004)

[13] Wong, H., Sycara, K.: A Taxonomy of Middle-agents for the
Internet. (2000)

[14] Paulucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Se-
mantic Matching of Web Services Capabilities. In: The Se-
mantic Web — ISWC 2002: Proceedings. (2002)

	Introduction
	Motivation or Three is not a crowd
	Capability description is not enough

	Technical preliminaries
	Lightweight coördination calculus
	Incidence calculus

	The LCC matchmaker
	Algorithms
	Discussion
	Implementation
	Inherent difficulties in the problem

	Related work
	Conclusion and future work

