
DOI 10.1007/s10115-002-0088-z
Springer-Verlag London Ltd. © 2003
Knowledge and Information Systems (2003) 5: 263–287

Web Site Synthesis Based on Computational Logic

João M. B. Cavalcanti and David Robertson
Centre for Intelligent Systems and their Applications, Division of Informatics,
University of Edinburgh, Edinburgh, UK

Abstract. Web site design and maintenance has become a challenging problem due to the increase
in volume and complexity of information presented in this way. Much attention has been given
to the deployment of Web sites but little thought has been given to methods for their design and
maintenance. Web site applications can also benefit from systematic approaches to development
that make design more methodical and maintenance less time consuming. One way to tackle
this problem is via automated synthesis, automatically deriving a Web site from a high-level
application description. Computational logic is well suited to this problem because of its support
of a uniform view of data and computation, allowing reasoning with both specification and program
via meta-programming.

Keywords: Automated synthesis; Computational logic; Web site application

1. Introduction

Web site design and maintenance has become a challenging problem due to the increase
in volume and complexity of information presented in that way. It often involves access
to databases, complex cross-referencing between information within the site and so-
phisticated user interaction. This is particularly true for data-intensive Web sites. These
sites are subject to constant updates, raising the cost of site maintenance. As this cost is
usually recurrent, a design method that facilitates maintenance is valuable.

Depending on the approach used, the cost of designing and maintaining a Web
site can vary. Without a systematic approach to Web site construction, a site developer
performs this task by writing HTML files by hand (possibly using a structure editor).
The effort to produce the site in this way increases with the size and complexity of the
application. The main sink of effort is maintenance, which can be very time consuming
and tedious because information content and presentational details are mingled. It also
involves direct manipulation of source files or program code, which requires technical
skills.

Received 14 June 2001
Revised 21 Dec 2001
Accepted 22 April 2002

264 J. Cavalcanti and D. Robertson

Effort

Site built

Technical

Clerical

Time

1

2
3

Fig. 1. Cost to design and maintain Web sites.

An alternative approach is to develop programs which automatically synthesize a
Web site given a specification of an application. This approach reduces maintenance cost
and in some cases it is possible to allow non-technical personnel to update the content
of the site via an appropriate interface. However, changes in the navigation structure or
visualization can be hard as this requires modifications in the program that generates the
Web site. If changes of this nature are frequent, this approach shifts the problem from
Web page maintenance to synthesizer maintenance.

Declarative specifications can form a basis to automated synthesis changing the focus
from the mechanics to produce Web sites to specification of applications (Florescu et al.,
1998; Cavalcanti and Robertson, 2000). Providing a high-level description of a problem
independent from any particular implementation allows the designer to concentrate on
the application description rather than on the mechanics for producing the Web site.

We have been using a domain-specific synthesizer for our research group Web
site at Edinburgh (http://www.dai.ed.ac.uk/groups/ssp/index.html) for about 4 years
(Robertson and Agustí, 1999). Maintenance is done simply by updating its declarative
specification. Although this has proved cost-effective it is limited to the generation of a
particular visualization and navigation structure. Although there is a declarative specifi-
cation of the site, any substantial change to the visualization style requires modification
in the synthesizer program.

We want a design method that produces a Web site consistent with a specification
and facilitates maintenance more generally. Updating data should become a clerical task
and modifications in navigation structure or visualization should not involve further
programming, although inevitably it still requires technical expertise. As a result, the
effort to produce a Web site is reduced and maintenance cost is low. Figure 1 shows a
comparison of cost between the traditional Web site maintenance (line 1), the automated
method used for the last 4 years (line 2) and the proposed approach (line 3).

Our approach applies computational logic to support a uniform view of data and com-
putation, allowing reasoning with both specification and program via meta-programming.
Each Web site application is described in three separate components (Schwabe and
Rossi, 1995; Florescu et al., 1998): information content, navigation structure and visu-
alization. Information content refers to data to be displayed in the Web pages. Navigation
structure defines the organization of the site and how items of information are related
to each other. Finally, visualization concerns how the information will be presented in

Web Site Synthesis Based on Computational Logic 265

the Web pages comprising the site. These separate descriptions allow each component
to be changed independently.

An interesting issue is how such a method can be generalized and still be useful. If the
synthesizer is very general it is likely to require specialist expertise to control it. On the
other hand, if the synthesizer is very specific it will only be able to produce Web sites for
a narrow range of applications. We want to find a balance between these two extremes.

The following section presents a discussion about related works. Section 2 presents
a general discussion of the approach and architecture of the system. Section 3 discusses
related work. In Section 4 the formalism used for application descriptions is discussed.
Sections 5 to 7 present the details of the Web site synthesis approach. Section 8 dis-
cusses an example of Web site synthesis. In Section 9 an evaluation of the approach is
discussed, followed by some concluding remarks.

2. A Three-Level Approach to Web Site Synthesis

The main idea behind the proposed approach is to derive aWeb site automatically from an
application and a related visualization description. This requires the use of an appropriate
formalism and we use a logic for this task. However, few people feel comfortable using
a general-purpose logic directly. One way to deal with this issue is to offer a suitable
interface to the designer based on a task- or domain-specific formalism and translate
the resulting description into logic expressions. As a result, the synthesizer is organized
into three different levels. The architecture of our synthesizer is illustrated in Fig. 2.

We begin with a high-level description of an application. From the application de-
scription an intermediate representation is automatically derived. Finally, this interme-
diate representation is combined with a visualization description to generate a corre-
sponding Web site code automatically.

The intermediate representation defines the structure of the Web site as a graph,
in which each node is a set of pieces of information and edges corresponding to links
between pieces of information. It defines navigational paths between all pieces of in-
formation that should be presented in the site. This second level allows the definition of
a more flexible Web site generation process because it is independent of any particular
implementation.

Navigation structure is automatically derived by the system from the application
specification. It is described in the intermediate representation (Level 2) by logic ex-
pressions which we call transition rules. Section 5.2 explain transition rules in detail.

A particular visualization for the site is also automatically derived by the system.
The visualization description (Level 2) provides templates for the Web pages and spe-
cific visualizations for individual pieces of information. Visualization descriptions are
detailed in Section 7.

Independence between application and visualization specifications gives us the abil-
ity to produce different Web sites by combining the same application specification with
different visualization descriptions. Formally, given a transition rule set Ti and a visual-
ization specification Vj , a Web site Wij can be automatically synthesized. The ideal situ-
ation, depicted in Fig. 3, is that every transition rule set is compatible with any visualiza-
tion specification. This means that a particular visualization specification can be reused
in differentWeb sites. For instance, from three transition rules sets and three visualization
specifications it is possible to produce nine different Web sites for the same application.

However, this is not always the case as some visualization specifications may not
be compatible with a transition rule set, so there is an empirical issue of how close we
get to the ideal of Fig. 3 in practice. We return to this topic in Section 9.

266 J. Cavalcanti and D. Robertson

Application
Description

Representation
Intermediate

Web Site Code

deriving
transition rules

generating code Visualization
Description

Level 1

Level 2

Level 3

Checking
Constraint

Fig. 2. The three-level approach.

W11

W

W

W

T1

T

V1

1n

n1

nn

Vn n

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

Fig. 3. Ideal transition rule set and visualization specification compatibility.

Web Site Synthesis Based on Computational Logic 267

3. Related Work

Various approaches to Web site design and maintenance have been proposed in recent
years. There is general agreement amongst these on some core concepts:

• separation between information content, navigation structure and visualization;

• declarative specifications, by means of high-level conceptual data models or declar-
ative languages;

• automated or semi-automated generation of Web site by means of CASE tools.

The main differences between the different proposals are in the emphasis given
to particular aspects of the process. Most studies focus on modeling aspects: Araneus
(Atzeni et al., 1998), Strudel (Fernández et al., 1998), AutoWeb (Fraternali and Paolini,
1998), OOHDM (Schwabe and Rossi, 1995), WebML (Ceri et al., 1999a); some are
data-driven: Torii (Ceri et al., 1999b); and others are based on semantic descriptions:
OntoWebber (Jin et al., 2001), SEAL (Maedche et al., 2001). Our approach is a data-
driven approach, which focuses on the generation of different visualizations and on
associated Web site maintenance.

Where the research is driven by modeling most approaches are based on traditional
conceptual data models, such as the entity-relationship model (ER) and its extensions
or object-oriented data models. In this category we can include Araneus, Torii, WebML,
AutoWeb and OOHDM. WebML proposes a structural model compatible with ER,
ODMG object-oriented data model and UML class diagrams. AutoWeb is based on the
HDM-lite model, which is a Web-specific version of HDM. OOHDM is also an object-
oriented extension to HDM. Strudel models aWeb site as graphs. OntoWebber and SEAL
are based on DAML + OIL and RDF, respectively, which are used to define ontologies
describing the application domain. Our approach can support different conceptual data
models. We advocate the idea of using existing data models, providing the appropriate
mapping procedures to our intermediate representation.

Support for heterogeneous data sources is offered by OntoWebber and Strudel. Some
limited support (for relational database systems only) is offered by Torii. This issue is
not very well exploited by SEAL, AutoWeb or OOHDM.

Generation of different visualizations for the same specification and personalization
of Web sites is supported by most approaches. Query languages and templates are
the main tools used for this purpose. OntoWebber, SEAL, Torii, WebML, AutoWeb and
Strudel all support this feature. Our approach provides support for combining declarative
descriptions of alternative visualizations with templates in different target languages.

Another interesting feature is the support for integrity constraints, which is given by
OntoWebber, Torii and Strudel.

Maintenance is not explored deeply by most approaches, although many claim sup-
port or some degree of automation, such as OntoWebber and Araneus.

Our work is distinct by offering a framework for Web site construction based on
computational logic. This feature makes it more convenient to introduce reasoning ca-
pabilities, supporting definition of integrity constraints (am issue also addressed by
OntoWebber, Torii and Strudel) and rules for both navigation and visualization. Our
approach is also highly extensible, either supporting different data sources or different
target languages for generating Web pages.

268 J. Cavalcanti and D. Robertson

described_by event

aircraft flight assigned pilot1,n 1,1 1,1 1,n

1,1

1,1

incident

fly

happen

1,n 1,n

Fig. 4. Accident-reporting ER diagram.

4. Application Description using an Entity-Relationship Model

As we noted in Section 2, we require as a precursor to Web site generation a model of the
task or domain for which the site is to be generated. The language in which this model is
described should be as general as possible, so it may be widely applied, but it must also
be accessible to application-specific engineers, which requires some commitments to
accepted engineering notation. One way of reconciling this tension between generality
and specificity is to follow a standard view of a class of Web design applications.
One such standard view is to provide an information system built around one or more
databases with an accompanying navigation structure. This has many similarities with
traditional non-Web systems and allows us to use for our domain a standard notation for
data modeling. We have chosen the Entity-Relationship model (ER) due to its popularity
and widespread use in application modeling, although other conceptual data models
are possible. The Entity-Relationship model originally proposed by Chen (1976) has
undergone many extensions, leading to a large number of slightly different data models.
We follow the concepts defined in the Enhanced Entity-Relationship model (Elmasri and
Navathe, 1999). This adds the concepts of specialization, generalization and categories.

Throughout this paper we use as a working example a Web site for an accident-
reporting application. The Web is an attractive medium for an accident-reporting
application domain because it allows easy access to information both to experts and
the general public. It is also a data-intensive Web site, as new reports or updates on ex-
isting reports are very frequent. Figure 4 shows an ER diagram to an accident-reporting
application.

The application concerns incidents that have happened during scheduled flights
(cargo or passenger). Some information about the aircraft and the pilot is also of interest.
Incidents are related to events which can be of three different types: descriptions (weather
conditions, flight level, etc.), nature of problem (mechanical failure, collision, fire, etc.)
or actions (by the crew or instructions by air traffic control).

Given that existing techniques for mapping an ER diagram into a corresponding
relational schema are available (Elmasri and Navathe, 1999), we assume that a relational
database is created. As an example, the corresponding relational database schema to
entities aircraft, flight and the relationship fly (including attributes and data types) is

Web Site Synthesis Based on Computational Logic 269

presented below. It also includes indication of foreign key attributes where appropriate.
Note that relationship fly is represented by attribute aircraft_registration in table flight.

aircraft

Attribute Data Type Key Foreign Key

model string
registration string

√
no_of_engines integer
type_of_engine string
year_of_manufacture integer

flight

Attribute Data Type Key Foreign Key

number integer
√

date date
√

type_of_flight string
crew integer
passengers integer
aircraft_registration string

√
commanders_license_no integer

√
incident_no integer

√

The ER schema presented in Fig. 4 is the starting point to the Web site synthesis and
all examples in the next sections will refer to the data items defined here.

5. The Intermediate Representation

In this section we concentrate on the intermediate representation, which corresponds to
the second level presented in Fig. 2.

5.1. Pieces of Information

A piece of information can directly correspond to a database item or it can be derived
from the database as a result of queries. These are represented as additional facts or
simple rules.

A piece of information has the format Label(Type, Info), where

• Label is used as additional information about the data item giving a specific context
to the information. It usually corresponds to an attribute name.
• Type is a predefined data type.
• Info describes a cluster of information associated with the label.

This notation is very useful to identify pieces of information individually and relate
them to other components such as pages in which they appear and a particular presenta-
tion. We have defined the following data types: integer, float, string, list, tuple, table,
image. Type list includes elements of a same type. tuple is a list of primitive elements
of different types. Table is a list of tuples.

270 J. Cavalcanti and D. Robertson

aircraft_model(string, Model)← aircraft(Model, _, _, _, _)

aircraft_instance(tuple, [Model, Reg, NoEngines, TypeEngine, Year])←
aircraft(Model, Reg, NoEngines, TypeEngine, Year)

all_aircraft(table, T)← T = {[Model, Reg, NoEngines, TypeEngine, Year] |
aircraft(Model, Reg, NoEngines, TypeEngine, Year)}

Fig. 5. Definition of pieces of information.

Figure 5 presents definitions of pieces of information corresponding respectively to
an aircraft model, an instance of an aircraft and a table with all instances of aircraft. In
this example constants start with a lower-case letter and variables start with a capital
letter.

Pieces of information are the building blocks of our approach to Web site construc-
tion. They also represent access between pieces of information which will be achieved
in the synthesized Web site by constructing hyperlinks to other pages. Instantiation of
pieces of information is performed within transition rules, as we explain in Section 5.2.

Dynamic Web sites have the ability to present information generated ‘on the fly’.
One way to do this is to present an HTML form and trigger an operation after user
input. The proposed approach also supports the specification and automated generation
of operations. Operations are implemented as CGI programs written in Prolog which
are associated to HTML forms defined in the Web pages. Due to scope and space in this
paper we omit the details of operation synthesis. These can be found in Vasconcelos
et al. (2000).

5.2. Transition Rules

A general view of site navigation is a sequence of actions, where each action is the
display of a set of pieces of information in a unit of display, possibly followed by a
transition to another set of pieces of information. Transition rules thus represent the
navigation structure of the site.

The predicate display is defined for describing the action of presenting
information in a particular unit of display. The predicate display has the form:

display(InfoList)

where InfoList is a list of pieces of information.
The binary operator⇒ specifies transitions from one page to another. Using this op-

erator together with the predicate display we can specify all transitions of an application.
A transition expression has the form:

display([Info0])⇒ display([Info1, …, Infon])←
p0(Info0) ∧
p1(Info1) ∧
...
pn(Infon)

Web Site Synthesis Based on Computational Logic 271

c
d

e
f

g
h

a
b

Fig. 6. A Web site example.

This rule states that after Info0 is displayed the information set [Info1, …, Infon] can
be displayed. Predicate pi corresponds to a predicate that instantiates each corresponding
piece of information Infoi . The piece of information Info0 defines a link to the set [Info1,
…, Infon].

Note that the display expression on the left-hand side of the rule usually includes
only one piece of information. This piece of information must be a subset of another set of
pieces of information appearing on the right side in another transition rule. By inspecting
subset relations between pieces of information on the left and sets of information on the
right side of transition rules, the navigation structure of a Web site is defined.

For example, the following transition rules define the Web site of Fig. 6. Pieces of
information are represented as atoms for simplicity, although they are normally more
complex structures as we see later.

display([a,b])←
pa(a) ∧ pb(b)

display([a])⇒ display([c,d])←
pc(c) ∧ pd (d)

display([b])⇒ display([e,f])←
pe(e) ∧ pf (f)

display([d])⇒ display([g,h])←
pg(g) ∧ ph(h)

display([f])⇒ display([g,h])←
pg(g) ∧ ph(h)

The initial page, also known as the homepage, needs a different rule because there
are no links to it. The homepage is defined by a rule of the form:

display([Info1, …, Infon])←
p1(Info1) ∧
...
pn(Infon)

272 J. Cavalcanti and D. Robertson

display([number(integer, N), date(date, D), aircraft_reg(string, AR)])←
flight(N, D, _, _, _, AR, _)

display([aircraft_reg(string, AR)])⇒
display([aircraft_model(string, AM), aircraft_reg(string, AR), year(integer, Y)])←

flight(_, _, _, _, _, AR, _) ∧
aircraft(AM, AR, _, _, Y)

Fig. 7. Example of transition rules.

An example of transition rules for aircraft and flight pages is given by Fig. 7.
In this example, each instance of aircraft is displayed in a Web page. From an aircraft

page there is a link to a flight page via the piece of information aircraft_reg. This link
corresponds to the relationship between entities aircraft and flight as defined in the ER
diagram presented in Fig. 4.

A complete intermediate representation for an application includes a set of transition
rules and pieces of information. A set of pieces of information defines the content of a
Web page. Transition rules define how to navigate between those pages.

5.3. Constraints on Paths

Constraints can be used to enforce an order of information presentation. A very common
constraint of this sort appears in electronic commerce Web sites, where information
about the purchase and the total amount must be displayed before the customer provides
the payment information. Similarly, a confirmation of payment must be displayed after
checkout. With a complex navigational structure constraints are important to prevent
errors.

We use two concepts from Transaction Logic (TR) (Bonner and Kifer, 1995), serial
conjunction and path, that were adapted to represent the sort of constraints we need.
Serial conjunction is used to represent a sequence of actions. This is written in the form
a ⊗ b to define a path formed of action a followed by action b.

In a Web site context a path is simply a sequence of information displays. Hence
constraints on a Web site can be expressed in terms of valid/invalid paths. Paths can be
derived from the site graph, where nodes correspond to pages and edges correspond to
transitions. The site graph is easily built by inspecting the transition rules. We assume
that a finite number of acyclic paths (non-looping paths) can be extracted from the
transition definitions. This is not a constraint on the generation of paths, but constraint
checking only considers acyclic paths.

The simplest path contains a single element which is a set of pieces of information,
as defined in Section 5.1. Hence path expressions are of the form:

display(InfoSet1) ⊗ display(InfoSet2) ⊗ · · · ⊗ display(InfoSetn)

Another useful concept taken from TR is a special symbol path which
corresponds to a sequence of actions of any length. This concept allows us to write
simplified expressions. For example, the expression:

path ⊗ display(InfoSet1) ⊗ display(InfoSet2) ⊗ path

Web Site Synthesis Based on Computational Logic 273

denotes any path that displays pieces of information in InfoSet1 which is
immediately followed by the display of InfoSet2. From the transition rule
defined in Fig. 7 the following path expression can be derived:

display([aircraft_reg]) ⊗ display([aircraft_model, aircraft_reg, year])

Constraint expressions are similar to path expressions, basically imposing an order to
the presentation of information. The following table presents some common constraint
expressions:

Expression Interpretation
¬ (path ⊗ ¬ display(InfoSet1) ⊗ path ⊗
display(InfoSet2) ⊗ path)

Information in InfoSet1 must be
displayed before information in
InfoSet2.

¬ (path ⊗ ¬ display(InfoSet1) ⊗
display(InfoSet2) ⊗ path)

Information in InfoSet1 must
be displayed immediately before
information in InfoSet2.

¬ (path ⊗ display(InfoSet1) ⊗ path ⊗
¬ display(InfoSet2) ⊗ path)

Information in InfoSet2 must be
displayed after information in
InfoSet1.

¬ (path ⊗ display(InfoSet1) ⊗
¬ display(InfoSet2) ⊗ path)

Information in InfoSet2 must
be displayed immediately after
information in InfoSet1.

Data types and values of pieces of information are omitted in path and constraint
expressions because they play no role in constraint checking. As a result constraint and
path expressions are simplified, including only information labels.

The designer is the one responsible for entering the appropriate constraints. A sim-
ple user interface can be constructed to help in building constraint expressions as only
information labels are needed. Standard expressions such as those presented in the table
above can also be used to guide the definition of constraints.

As an example, if we want information about an aircraft only to be reached after
viewing the related flight page, the following constraint may be defined:

¬ (path ⊗ ¬ display([number, date, aircraft_reg]) ⊗ path ⊗
display([aircraft_model, aircraft_reg, year]) ⊗ path)

A site graph can easily be derived from transition rules, in which sets of pieces of
information correspond to nodes and links correspond to edges. From the site graph
paths can be derived. Finally, matching path expressions with constraint expressions we
can check if constraints hold. This ensures that all paths are valid ones.

6. Deriving Transition Rules from ER Schemata

Given that an ER schema is provided by the Web site designer our task is automatically
to define a corresponding intermediate representation. A fully automated process at this
step is necessary because the details of the intermediate representation are hidden from
the Web site designer.

It is possible to derive different sets of transition rules from one ER diagram, allowing
the construction of different Web sites for the same application. This is an interesting
solution for rapid application prototyping as the only interaction with the site designer
is the ER diagram input and style choices for pieces of information and Web pages.

274 J. Cavalcanti and D. Robertson

display(InfoE)←
entity(E) ∧
instantiate_all_instances(E, InfoE)

Fig. 8. Transition rule corresponding to entities.

A standard navigation structure and a layout for visualization are also automatically
produced.

Here we suggest two different transition rule sets, which are called entity-based and
instance-based. The first defines a Web page for each entity, placing all instances of that
entity together. The second option defines a Web page for each instance of an entity.
Links between pages are derived from relationships between entities. The mapping
procedures for these two approaches are described in the next two sections.

There are some additional auxiliary predicates used in the transition rules defined in
the next two sections. Some of these predicates correspond to the ER model concepts
and they are self-explanatory. Other predicates are used to instantiate values. These
predicates are:

• instantiate_all_instances(E, Info): Info is instantiated to a structure including all
instances of entity E. A relationship can also be used in place of an entity.
For example, the result for instantiate_all_instances(aircraft, Info) is

Info = [[model(string, ‘Douglas C47 Dakota 4’), reg(string,‘G-AMPZ’),
engine_no(integer, 2), engine_type(string, ‘P&W R1830-92 piston engines’),
year_manufacture(integer, 1944)], [model(string, ‘Boeing 777-200B’,
reg(string,‘N784UA’), engine_no(integer, 2), engine_type(string, ‘P&W PW
4090 turbofan engines’), year_manufacture(integer, 1997)], …].

• instantiate_instance(E, K, Info): Info is instantiated to one instance of entity E,
given that key attribute K is already instantiated. A relationship can also be used.
instantiate_instance(aircraft, [‘N784UA’], Info) would result in:

Info = [model(string, ‘Boeing 777-200B’), reg(string,‘N784UA’),
engine_no(integer, 2), engine_type(string, ‘P&W PW 4090 turbofan engines’),
year_manufacture(integer, 1997)]

• instantiate_val(E, Attr, Var): instantiate the variable Var with an instance value of
attribute Attr belonging to entity E. A relationship can also be used in place of an
entity. For example, in instantiate_val(aircraft, [model], Var) the result can be:
Var = ‘Boeing 777-200B’.

6.1. Entity-based Transition Rules

For each entity a transition rule is created to instantiate all instances in a page as described
by Fig. 8.

InfoE is a piece of information composed of all instances of that entity. The entity
name is also used as the label for each piece of information.

Transition rules related to relationships depend on the cardinality constraint defined.
Relationships N : N require the construction of separate Web pages whereas 1 : 1 and
1 : N relationships are represented by links in the related entities Web pages. Figure 9

Web Site Synthesis Based on Computational Logic 275

RE E 21

1,1 0,1

display(InfoE1)⇒ display(InfoE2)←
relationship(_, E1, _, 1, E2, _, _, _) ∧
instantiate_all_instances(E2, InfoE2)

display(InfoE1)⇒ display(InfoE2)←
relationship(R, E2, _, _, E1, _, 1, _) ∧
instantiate_all_instances(E2, InfoE2)

Fig. 9. Binary relationship 1:1 and its transition rules.

shows the transition rules derived from 1 : 1 and 1 : N relationships. Rules for N : N and
n-ary relationships are presented in Fig. 10.

Transition rules corresponding to ternary and n-ary relationships are similar to those
related to binary N:N relationships.

For hierarchies of generalization and specialization, the corresponding rule is defined
in Fig. 11.

Applying these rules in the ER diagram described in Fig. 4, the resulting structure
is illustrated by Fig. 12:

6.2. Instance-Based Transition Rules

In this transition rule set, a page is created for each instance of an entity. Transitions
now are defined in terms of relationship between instances as described in Fig. 13. They
follow the same pattern of entity-based transition rules, but for each entity or relationship
instance there will be an individual page. Key attributes are used as pages identifiers.

The labels and data types of each piece of information depend on the attributes,
names and types of each entity or relationship. As a result of transition rules, a similar
information structure to the entity-based one is created. In this case, each information
set corresponds to a particular instance of an entity or relationship. Figure 14 illustrates
the information structure resulting from the transition rule related to the relationship
between aircraft and flight.

Given these two choices for generating transition rules, the last task is to define a
visualization for those pieces of information. This issue is discussed in the next section.

7. Visualization

One of the main ideas of our approach is separation between the application information
content from visualization features. We have described so far how to model and develop
a Web application from the data and navigation point of view. Now we should explain
how to relate those to an appropriate visualization.

In order to connect information content with a particular visualization we use data
types as defined in Section 5.1. Similarly a set of visualization styles is defined. Exam-
ples of such styles include text, table, enumerated_list, itemised_list. By associating
visualization styles to data types, visualization description becomes completely inde-
pendent from any particular application.

276 J. Cavalcanti and D. Robertson

RE E 21

1,n1,n

display(InfoR)←
relationship(R, _, _, _, _, _, _, _) ∧
instantiate_all_instances(R, InfoR)

display(InfoE1)⇒ display(InfoR)←
relationship(R, E1, _, n, _, _, n, _) ∧
instantiate_all_instances(R, InfoR) ∧
instantiate_all_instances(E1, InfoE1)

display(InfoE2)⇒ display(InfoR)←
relationship(R, _, _, n, E2, _, n, _) ∧
instantiate_all_instances(R, InfoR) ∧
instantiate_all_instances(E1, InfoE2)

display(InfoR)⇒ display(InfoE1)←
relationship(R, E1, _, n, _, _, n, _) ∧
instantiate_all_instances(R, InfoR) ∧
instantiate_all_instances(E1, InfoE1)

display(InfoR)⇒ display(InfoE2)←
relationship(R, _, _, n, E2, _, n, _) ∧
instantiate_all_instances(R, InfoR) ∧
instantiate_all_instances(E2, InfoE2)

Fig. 10. Binary relationship N:N and its transition rules.

E

SubE 1 SubE 32SubE

display(InfoE)⇒ display(InfoSubE)←
specialisation(E, ListofSubEntities) ∧
SubE ∈ ListofSubEntities ∧
instantiate_all_instances(SubE, InfoSubE) ∧
instantiate_all_instances(E, InfoE)

Fig. 11. Transition rule derived from specialization hierarchies.

Web Site Synthesis Based on Computational Logic 277

aircraft
Info Info

pilot

Info
incident

Info
described_by

Info
event

Info
flight

Fig. 12. Information structure – Entity-based.

display([KeyInfo, OtherInfo])←
entity(E) ∧
key(E, K) ∧
instantiate_val(E, K, Keyinfo) ∧
instantiate_instance(E, K, OtherInfo)

display([KeyInfo1, KeyInfo2, OtherInfo])←
relationship(R, E1, _, n, E2, _, n, _) ∧
key(E1, K1) ∧
key(E2, K2) ∧
instantiate_val(R, [K1, K2], [KeyInfo1, KeyInfo2]) ∧
instantiate_instance(R, [KeyInfo1, KeyInfo2], OtherInfo)

display([KeyInfo1])⇒ display([Keyinfo2, OtherAttribs2])←
relationship(R, E1, _, 1, E2, _, _, _) ∧
key(E1, K1) ∧
key(E2, K2) ∧
instantiate_val(E1, K1, KeyInfo1) ∧
instantiate_val(E2, K2, KeyInfo2) ∧
instantiate_instance(E2, K2, OtherAttribs2)

display([KeyVal1])⇒ display([KeyVal2, OtherAttribs2])←
specialisation(E, ListofSubentities) ∧
SubE ∈ ListofSubentities ∧
key(E, K1) ∧
key(SubE, K2) ∧
instantiate_val(E, K1, KeyVal1) ∧
instantiate_val(SubE, K2, KeyVal2) ∧
instantiate_instance(SubE, K2, OtherAttribs2)

Fig. 13. Transition rules for instance-based visualization.

A specific visualization can be associated to data types using the following expres-
sion:

style(Type, Style)

where Style is a predefined visualization style and Type is a data type.

Using this specification, pieces of information can be translated into
corresponding HTML code, which is our target language.

278 J. Cavalcanti and D. Robertson

.

.

.

number(integer, 110)

date(date, ’17 December 1999’)

crew(integer, 3)

passengers(integer, 0)

incident_no(integer, 8)

engine_type(string, ’P&W R1830-92 piston engines’)

commanders_license_no(string, ’999’)

aircraft_registration(string, ’G-AMPZ’)

type_of_flight(string, ’Public Transport (Cargo)’)

engine_no(integer, 2)

model(string, ’Douglas C47 Dakota 4’)

reg(string,’G-AMPZ’)

year_manufacture(integer, 1944)

model(string, ’Boeing 777-200B’)

reg(string,’N784UA’)

engine_no(integer, 2)

year_manufacture(integer, 1997)

engine_type(string, ’P&W PW 4090 turbofan engines’)

number(integer, 660)

date(date, ’10 October 1999’)

crew(integer, 15)

passengers(integer, 212)

commanders_license_no(string, ’888’)

incident_no(integer, 10)

type_of_flight(string, ’Public Transport (Passenger)’)

aircraft_registration(string, ’N784UA’)

Fig. 14. Information structure – instance-based.

style(Type1, Style1)

style(Type2, Style2)

style(Type3, Style3)

style(Type4, Style4)

Visualisation Specification

display([InfoLabel2(Type2, Val2), ...])

display([InfoLabel3(Type3, Val3), ...])

display([InfoLabel1(Type1, Val1), ...])

Intermediate Representation

apply_style(Style2, Val2)

HTML Code

Fig. 15. Applying styles to pieces of information.

Figure 15 illustrates how pieces of information presented in Fig. 5 can be related
to a visualization style. The data type of a piece of information is used to find the re-
lated visualization style, then the selected style is applied to the instantiated information
and finally transformed into HTML code. We make use of the Pillow library (Cabeza
and Hermenegildo, 1997), which provides facilities for translating Prolog terms into
HTML terms.

Additional details such as font type, font size, colors and text alignment are defined
in a CSS style sheet (W3C, 1999). A suitable interface should be offered to the designer
in order to input all necessary parameters to the style sheet. Currently, a standard CSS
style sheet is automatically generated including definitions for each style.

The reason to make use of style sheets is to keep the representation for our visual-
ization styles simple. Without a style sheet, details such as colors and fonts should be in-
cluded as arguments to the mapping procedure to translate a visualization style to HTML.

Web Site Synthesis Based on Computational Logic 279

aircraft
1,n 1,1

fly flight

Fig. 16. Partial ER diagram for accident-reporting application.

The use of CSS style sheets provides an additional flexibility for defining visualiza-
tions for the site as it can be changed without any impact on other specification levels.
An example of a style sheet is given in Section 8.

Given that information content and styles are separately defined it is easy to change
the visualization of a piece of information. This can be done in different ways:

1. Changing the style associated with the piece of information data type. In this case all
pieces of information of that type will also have their style changed.

2. Changing the piece of information data type. As a result, the information is displayed
according to the new data type style.

3. Changing the CSS style sheet. This allows modifying colors, font types and sizes and
margin alignments.

8. Example of Web Site Synthesis: An Accident-Reporting Web Site

In this section we present an example of Web page synthesis from the initial specification
until the final code using the application discussed so far, an accident-reportWeb site. The
example presented here uses data from the United Kingdom Air Accidents Investigation
Branch (AAIB: http://www.open.gov.uk/aaib/).

8.1. Mapping the ER Schema to a Corresponding Set of Transition Rules

From the ER diagram presented in Fig. 4 transition rules are automatically derived.
Entity-based rules instantiate pieces of information as structured lists including all in-
stances of an entity or relationship. Instance-based rules instantiate each instance of an
entity as an individual piece of information.

In order to save space, we concentrate on the generation of the aircraft Web page.
Figure 16 shows the part of the ER diagram of the accident-reporting application used
in this example.

The example uses the following data about aircraft as it would be found in the
application database:

Model Registration Engines Type of engine Year

Douglas C47 Dakota 4 G-AMPZ 2 P&W R1830-92 1944
piston engines

Boeing 777-200B N784UA 2 P&W PW 4090 1997
turbofan engines

Airbus A310-304 5YBFT 2 GE CF6-80C2 1989
turbofan engines

Cessna 208B Caravan LN-PBB 1 P&W PT6A-114 1992
turboprop engine

Boeing 747-136 G-AWNF 4 P&W JT9D-7 1970
turbofan engines

McDonnell Douglas MD11 N1756 3 GE CF6-80 1992
turbofan engines

280 J. Cavalcanti and D. Robertson

display(Flight_Info)←
entity(flight) ∧
instantiate_all_instances(flight, Flight_Info)

display(Flight_Info)⇒ display(Aircraft_Info)←
relationship(fly, flight, 1, 1, aircraft, 1, n, []) ∧
instantiate_all_instances(aircraft, Aircraft_Info)

where:

Flight_Info = [all_flights(table, FlightData)]
Aircraft_Info = [all_aircraft(table, AircraftData)]

Fig. 17. Transition rules for defining aircraft page.

8.1.1. Entity-Based Transition Rules

The rules presented in Fig. 17 define aWeb page for entity aircraft, including all instances
of that entity. It also shows the definition of a page for entity flight which includes a link
to the aircraft page.

Note that the piece of information all_aircraft is defined by the following expression:

all_aircraft(table, AircraftData)←
AircraftData = {[Model, Reg, NoEngines, TypeEngine, Year] |
aircraft(Model, Reg, NoEngines, TypeEngine, Year)}

Once we have the transition rules defined, we need a visualization specification such
as:

style(table, table_style)

which defines that data type table is to be displayed using style table_style. This means
that any piece of information of type table will be rendered as an HTML table. The
resulting Web page is presented in Fig. 18.

Changing the visualization can be done by simply changing the visualization spec-
ification, as for example,

style(table, text_style)

This definition would generate an alternative presentation for the same aircraft page,
using the same transition rule set.

8.1.2. Instance-Based Transition Rules

Instance-based rules need to deal with the database instance level. This means that
access to actual values is necessary in order to define the relationship between instances.
Figure 19 presents the transition rules corresponding to the same ER diagram presented
in Fig. 16.

The styles used for this example are:

style(integer, labelled_info)
style(string, labelled_info)
style(date, date_style)

Web Site Synthesis Based on Computational Logic 281

Fig. 18. Aircraft page: entity-based and table visualization.

Figure 20 present the resulting page for one instance of aircraft. For all other in-
stances similar pages are created.

8.2. Deriving a Site Navigator

In almost all Web site applications there is a set of pages which should be referenced by
all the others. In most cases it is desirable that links to these pages are grouped together
and presented in a standard form in every page of the site. We call this set of links
‘navigator’.

The navigator can be derived automatically by inspecting the topological features
of the Web site graph. Alternatively, it can be explicitly defined by the designer. A
specific visualization for the navigator is defined in the same way as any other piece of
information using predicate style:

style(navigator, navigator_style)

where navigator_style defines a specific presentation style for the navigator.
One way to find out which pages should belong to a site navigator is by inspecting

the site graph. The simplest case is that of a page which is linked from all other pages
of the site. The cardinality of its neighbor’s set and intersections between other pages’
neighbours set can help in deciding if a page should be included in the navigator.

Once a navigator is defined it is also treated as a piece of information and will be
presented in all pages generated. The visualization of the navigator depends on the style
defined for it and its place in a page depends on the layout of the page template.

282 J. Cavalcanti and D. Robertson

display([FlightKeyVal, FlightOtherVal])←
entity(flight) ∧
key(flight, FlightKey) ∧
instantiate_val(flight, FlightKey, FlightKeyVal) ∧
instantiate_instance(flight, FlightKeyVal, FlightOtherVal)

display(FlightKeyVal)⇒ display([AircraftKeyVal, AircraftOtherVal])←
relationship(fly, flight, _ , 1, aircraft, _ , _ , _) ∧
key(flight, FlightKey) ∧
key(aircraft, AircraftKey) ∧
instantiate_val(flight, FlightKey, FlightKeyVal) ∧
instantiate_val(flight, AircraftKey, FlightForeignKeyVal) ∧
instantiate_instance(aircraft, FlightForeignKeyVal, AircraftOtherVal)

where:

FlightKey = [number, date]

FlightKeyVal = [number(integer, 110), date(date, ‘17 December 1999’]

FlightOtherVal = [type_of_flight(string, ‘Public Transport (Cargo)’),
crew(integer, 3), passengers(integer, 0),
aircraft_registration(string, ‘G-AMPZ’), incident_no(integer, 8),
commanders_license_no(integer, 1111)]

Fig. 19. Transition rules for defining aircraft page.

Fig. 20. Aircraft page: instance-based and text visualization.

Web Site Synthesis Based on Computational Logic 283

Transition rules
Entity-based

Visualization
Table-based

W2

W1

W3

W4

W5

W6

W7

W8

W9

Transition rules
Query-based

Transition rules
Instance-based

Visualization
List-based

Text-based
Visualization

Fig. 21. Combination of transition rules and visualizations.

9. Evaluation

The example introduced in the previous section shows that four different Web sites can
be generated for this application from the same entity-relationship schema. We have
defined two transition rule sets (entity-based and instance-based) and two visualization
specifications (table-based and text-based). If more transition rule sets and visualization
specifications are defined, the number of different Web sites that can be produced will be
greater, the number of Web sites being the product between the number of transition rule
sets and visualization specifications. Figure 21 illustrates the combination of transition
rules and visualizations.

The advantage of this approach is the greater number of different Web sites produced
using fewer specifications. Traditional Web site synthesis requires the same number of
specifications as the number of Web sites produced. The reason is the lack of separation
between application and visualization specifications.

For example, from three transition rules sets and three visualizations (six specifica-
tions), nine Web sites can be constructed in total (Fig. 21). From four transition rules
sets and five visualizations (nine specifications), 20 different Web sites can be con-
structed. Traditional approaches would require nine and 20 specifications respectively,
to construct the same number of sites.

The ability of combining a Web site application specification (including
content and navigation) with different visualization descriptions dramatically reduces
maintenance effort. This is clear even in the small example presented in the previous
section. For example, changing the visualization of the page presented in Fig. 18 can
be done simply by changing the data type of each piece of information corresponding
to an entity, from table to list. This new visualization is presented in Fig. 22. Similarly,
Fig. 23 illustrates another visualization for the same Web page by adjusting parameters
related to the table style in the CSS style sheet.

Although it is possible to combine a set of transition rules with different visualiza-
tion definitions, there are visualizations more appropriate to each kind of application.
However, this issue is subjective, making it very difficult to decide automatically which
visualization should be applied. In the example presented in Section 8 the table-based

284 J. Cavalcanti and D. Robertson

Fig. 22. Aircraft page: entity-based and list visualization.

Fig. 23. Aircraft page: entity-based and new table visualization.

Web Site Synthesis Based on Computational Logic 285

visualization is more appropriate to entity-based rules than text-based presentation. For
instance-based rules both visualizations are appropriate.

The example shows that an appropriate relation between data types and styles eas-
ily supports the generation of alternative visualizations. A practical application of this
feature is defining specific visualization for different classes of users.

10. Concluding Remarks

Declarative specifications of Web site applications offer possibilities to apply automated
synthesis techniques to reduce the effort of design and maintenance. We presented an
approach to design and maintenance of Web sites based on high-level declarative de-
scriptions of applications. An entity-relationship model is used to describe applications
and the resulting diagram is the input to the Web site synthesizer.

This approach has the following main features:

1. declarative specification of an application;

2. separation between information content, navigation structure and visualization spec-
ification;

3. automated generation of Web site code from a standard high-level specification based
on ER schema;

4. generation of alternative visualizations for the site.

The separation between information content, navigation structure and
visualization specification allows separate reasoning in each component:

• Different data models could be used instead of the entity-relationship model to de-
scribe the application domain. Many different mapping procedures from a conceptual
data model to the intermediate representation can be defined.

• Pieces of information are derived from the conceptual data model and its content
extract from the application database.

• From the navigation structure description, a site graph and a navigator can be derived.

• Constraints in the order of information presentation can be enforced by
inspecting paths derived from the site graph.

• Visualization styles related to data types support a more flexible approach for defining
Web site presentation, as it is independent from the problem domain.

• Fine tuning of visualization of pieces of information is done via CSS style sheets.
This allows a simpler description of visualization styles and supports changes in the
style sheet without necessarily changing the style.

• The target language, currently HTML/CSS, can also be changed (for example to
XML/XSL). Only the mapping procedures from one level to another must be defined,
making the approach very flexible and adaptable to new technologies.

Although visualization styles are defined for each piece of information, a general
page template is still needed, restricting control over page presentation. A visualization
specification language can overcome the need for predefined templates, allowing more
customizable and flexible visualization specifications.

The main advantage of this approach is its support for:

286 J. Cavalcanti and D. Robertson

• changing the visualization style of a type, which in turn changes the
visualization of all pieces of information of that type;
• changing the type of a piece of information, which changes the visualization for that

particular piece of information;
• updates on the database without any impact on the items above;
• changes in the general style of the site without necessarily changing the

presentational form of pieces of information and vice-versa;
• reuse of visualization descriptions in different application domains.

The benefits of the approach are as follows:

• Complexity is reduced because fewer specifications are needed to produce different
Web sites as the same visualization styles can be applied to different transition rule
sets.
• The designer concentrates on the application description rather than on the mechanics

for producing the Web site. Details of the synthesis process are completely separated
from the conceptual level.
• Only the specification of the site should be changed in order to change the Web site,

either its structure, visualization or both. There is no need to change the generator
program.
• Information content (usually defined in a database) can be altered without any impact

on visualization or navigation structure. Via an appropriate interface this task requires
little or no technical expertise.

Acknowledgements. The first author is supported by the Brazilian Government through CAPES
grant no. 1991/97-3. This work also is supported under the Advanced Knowledge Technologies
(AKT) Interdisciplinary Research Collaboration (IRC), which is sponsored by the UK Engineering
and Physical Sciences Research Council under grant no. GR/N15764/01. TheAKT IRC comprises
the universities of Aberdeen, Edinburgh, Sheffield, Southampton and the Open University.

References

Atzeni P, Mecca G, Merialdo P (1998) Design and maintenance of data-intensive web sites. In proceedings
of the international conference on extending database technology (EDBT), Valencia, Spain

Bonner AJ, Kifer M (1995) Transaction logic programming. Technical report CSRI-323, Computer Systems
Research Institute, University of Toronto, November

Cabeza D, Hermenegildo A (1997) WWW programming using computational logic systems (and the PiL-
LoW/CIAO library). Technical report, Computer Science Department, Technical University of Madrid.
Online at http://www.clip.dia.fi.upm.es/miscdocs/pillow/pillow.html

Cavalcanti J, Robertson D (2000) Synthesis of web sites from high level descriptions. In third international
workshop on web engineering, WWW9 conference, Amsterdam, The Netherlands, May. Lecture Notes
in Computer Science 2016, Springer, Berlin

Ceri S, Fraternali P, Bongio A (1999a) Web modeling language (WebML): a modeling language for designing
web sites. In proceedings of WWW9, Toronto, Canada, May

Ceri S, Fraternali P, Paraboschi S (1999b) Data-driven, one-to-one web site generation for data-intensive
applications. In proceedings of the 25th international conference on very large data bases (VLDB’99),
7–10 September, Edinburgh, UK, pp 615–626

Chen PP (1976) The entity-relationship model: toward a unified view of data. ACM Transactions on Database
Systems 1(1), pp 9–36

Elmasri R, Navathe S (1999) Fundamentals of database systems, 3rd edn. Benjamin Cummings, Redwood
city, CA

Fernández M, Florescu D, Kang J, Levy A, Suciu D (1998) Catching the boat with strudel: experience with a
web-site management system. In SIGMOD conference on management of data, Seattle, WA

Florescu D, Levy A, Mendelzon A (1998) Database techniques for the World-Wide Web: a survey. SIGMOD
Record 27(3), pp 59–74

Web Site Synthesis Based on Computational Logic 287

Fraternali P, Paolini P (1998) A conceptual model and a tool environment for developing more scalable,
dynamic and customizable web applications. In proceedings of the international conference on extending
database technology (EDBT), Valencia, Spain

Jin Y, Decker S, Wiederhold G (2001) OntoWebber: model-driven ontology-based web site management. In
proceedings of the first international semantic web working symposium (SWWS’01), Stanford University,
Stanford, CA, 29 July–1 August

MaedcheA, Staab S, Stojanovic N, Studer R, SureY (2001) SEAL: a framework for developing SEmantic Web
PortALs. In 18th British national conference on databases (BNCOD 2001), Oxford, 9–11 July. LNCS,
Springer, Berlin

Robertson D, Agustí J (1999) Software blueprints: lightweight uses of logic in conceptual modelling, ACM
Press/Addison-Wesley/Longman

Schwabe D, Rossi G (1995) The object-oriented hypermedia design model. Communications of the ACM
38(8), pp 45–46

Vasconcelos W, Schwitter R, Molla D, Cavalcanti J (2000) Implementing Prolog-run WWW sites. In 13th
international conference on applications of Prolog, inap 2000, Waseda University, Tokyo, Japan, October

W3C (1999) Cascading style sheets, level 1. W3C recommendation December 1996, revised January 1999.
Online at http://www.w3.org/TR/REC-CSS1

Author Biographies

João Cavalcanti is a Ph.D. student at the Centre for Intelligent Systems and their
Applications, part of Informatics at the University of Edinburgh. His research is
on computational logic methods for automated Web site synthesis. He is also a
lecturer at the Department of Computer Science at the University of Amazonas,
Brazil.

David Robertson is the Director of the Centre for Intelligent Systems and their
Applications, part of Informatics at the University of Edinburgh. His research
is on lightweight uses of formal methods to the design and analysis of complex
artefacts such as Web sites or large multi-agent systems. His research group
(www.dai.ed.ac.uk/groups/ssp) tackles problems at the intersection of artificial
intelligence and software engineering.

Correspondence and offprint requests to: João Cavalcanti, Centre for Intelligent Systems and theirApplications
(CISA), Division of Informatics, University of Edinburgh, 80 South Bridge, Edinburgh EH1 1HN, UK. Email:
joaoc@dai.ed.ac.uk

