Synthesis of Web Sites from High Level
Descriptions

Joao M. B. Cavalcanti* David Robertson

Institute for Representation and Reasoning
Division of Informatics, The University of Edinburgh
{joaoc,dr}@dai.ed.ac.uk

Abstract. As use of Web sites has exploded, large amount of effort
have gone into the deployment of sites but little thought has been given
to methods for their design and maintenance. This paper reports some
encouraging results on the use of automated synthesis, using domain-
specific formal representations, to make design more methodical and
maintenance less time consuming.

Key Words: Web site application, computational logic, HTML.

1 Introduction

Web site maintenance has become a challenging problem due to the increase
in size and complexity of Web site applications. It often involves access to
databases, complex cross referencing between information of the site and so-
phisticated user interaction.

Web sites applications related to a same domain often share a common pat-
tern. Consider, for example, the Software Systems and Processes Group at Edin-
burgh (www.dai.ed.ac.uk/groups/ssp/index.html) the research group Web sites
of the Artificial Intelligence Research Institute in Barcelona (www.iiia.csic.es)
and The Artificial Intelligence Laboratory at MIT (www.ai.mit.edu). Although
they look quite different, the underlying application design is very similar, par-
ticularly in information content. We would like to exploit these similarities, for
example in reusing application components for visualisation designs, thus saving
time in application development.

One way to achieve this goal is to separate, formally, the information con-
tent of Web sites from their presentational form. Separation of content from
visualisation aspects at early design stages is important in order to allow a de-
scription its essential content, such as data, operations, information flow within
the site and constraints on the information flow. These features are mingled with
presentational descriptions if we work directly in HTML [8] code.

A traditional way of representing information processing abstractly is through
computational logic. Although logics provide a powerful framework for applica-
tion description, few people feel comfortable when using them directly as a tool.
This problem can be overcome by designing domain or task-specific dialects of

* On leave from University of Amazonas, Brazil.

a logic which are adapted to the informal styles of description used in the ap-
plication, while also supporting automatic translation to less intuitive formal
representations needed for computation. This leads to different levels of rep-
resentation in which a mapping from higher levels to the lower ones will be
required. Hence, the Web site generation process is organised in different levels,
from a high level description going through an intermediate representation to
the resulting site code.

This work describes an approach to design and maintenance of Web site ap-
plications which is based on simple form of computational logic The key feature
of the proposed approach is separating the site information content from its
presentational form and deriving the Web site code from its content descrip-
tion via automated synthesis. The main benefit of the approach is the ability to
work separately on the application and visualisation specifications, allowing up-
dates in the application content without necessarily changing the presentational
form and also changing the visualisation of the site without any changes in the
specification of the site content.

Parts of this task have been addressed by others. WebMaster [7] is a tool,
that can be used for constraint checking on Web Sites based on rules expressed
in logic. Strudel [5] is a Web site management system, which generates Web site
code from data residing in a database via a SQL-like language. Ferndndez et al
[6] addressed the problem of specifying and verifying integrity constraints on a
Web site, based on a domain specific description language and creating a graph
structure to represent the site. This is done in a fashion very similar to our work,
but we also have added representation and automated generation of operations
(CGI programs), which is not considered by Fernandez et al.

The next section introduces the 3-level approach, section 3 presents a working
example, section 4 describes the problem description language, section 5 presents
the synthesis process for the example Web site.

2 A Three-Level Approach

A Web site application is a collection of pages where each page consists of infor-
mation content and links. Information content often is described from a database.
Links correspond to transitions between pages and there are two different ways
of making a transition: via a hyper-link between two pages or by an operation
call. An operation is a program that may receive some input arguments from
the first page and displays the result of its computation in the second page. We
implement operations as CGI programs [4]. From this point onwards we refer
to hyper-links just as links since we have already made the distinction between
them and operation calls in the context of transitions.

Our approach to the design and maintenance of Web sites is based on compu-
tational logic. However, since the designer is not supposed to work directly with
logic, the synthesiser is arranged in three different levels as illustrated in Figure
1. The high level description should be provided by the designer by means of
an appropriate interface. Having this initial description as a starting point, an

intermediate representation for the application is built using a domain-specific
formal language. The Web site code is automatically generated from the inter-
mediate representation. The key idea in this approach is separating information
content from its presentational form. Hence, a description of application com-
ponents such as data and operations can be produced regardless of its future
rendering in a Web browser.

High Level

Description Informal problem description

i L Set of logical expressions
Intermediate Visualisation £ P
Representation Description
Web Site Code Stylesheets

Implementation

Web Site

Fig. 1. The 3-Level Approach

Having made this specification in a declarative way, independent from imple-
mentation/visualisation details, allows a great deal of flexibility in choosing ap-
propriate styles for visualisation and different implementations for the opera-
tions. Our paper concentrates on the left side of the diagram in Figure 1 ex-
plaining how the intermediate representation is used in code synthesis. A brief
discussion on visualisation issues is given in section 4.4.

3 An Example

As a working example, consider a research group Web site like the ones mentioned
in the introduction. The site should display information about the group, such
as an introduction about the group aims and activities, members of the group
and their publications and projects which have members of the group involved.
Note that this is a subset of a real research group Web site which may include
more information than that described here.

Formal representation of our example site begins with the domain-specific
language used to describe the basic elements of the research group. This is done
in conventional predicate logic but it is (equally) easiest to think of this as
a database of relevant information. For instance, the database of the research

group Web site can be described by the following set of predicates, where the
arguments names give a guide to the type of data structure to which each would
be instantiated in the actual database.

group_aims(Aims).

contact.info(E_mail, Address, Postcode, City).
person(Name, Status).

project(Title, Abstract, People_involved).
publication(Title, Authors, Reference, Year, Abstract).

We want to build a Web site structured like the diagram in Figure 2.

Home
People Projects Publications
Project 1 | e Project n

Fig. 2. A general representation for a research group Web site

Each box corresponds to a page of the site and arrows correspond to transi-
tions between pages. Our next step is to describe a possible distribution of data
among the pages of the site.

The home page should present the aims of the group and contact information.
In the people page we want to show two different lists, one containing the names
of the current members and the second with names of previous members of the
group. The publications page presents a list with all publications of the group
members. A list of project titles is displayed on the project page and for each
project there is a specific page presenting its title, abstract and people involved.
In the following discussion we shall introduce a formal representation of these
requirements and then use these to generate a Web site.

The relation between information displayed on a page and the research group
description is expressed by rules. The expression below defines that the group
aims and contact information are displayed on the home page.

display(home, [group_aims(X), contact_info(Y)]) +
group_aims(X) A
contact_info(Y),

Changes in display of information are represented by transition rules. The
transition from home to the people page, for example, is represented by the
following expression:

display(home, []) = display(people, []).

The empty list “[]” means that the transition is independent of the infor-
mation displayed by either page. This sort of expression corresponds to a simple
hyper-link.

Similar expressions are used to represent the other pages and transitions. A
catalogue of these expressions is given in the next section.

4 Describing Web Site Applications

We define a Web site application in terms of data, operations, transitions and
constraints on the transitions. The expressions used for this purpose are formally
described here.

4.1 Transitions

Information flow when navigating a Web site can be viewed as a sequence of
actions, where each action is the display of a set of information. A transition
moves from one page to another. As mentioned earlier, there are two different
ways to make a transition: via hyper-links or operation calls. In order to express
information flow in terms of actions, an operator and two special predicates were
defined. The following tables explain their meaning.

[Expression [Interpretation |

display(ld, InfoList) display InfoList at page identified by Id. InfoList
is a list with the form [p;(Info,), Py(Infos),
...y pn(Infoy)], where each p; is a predicate
and Info; a variable corresponding to a specific
piece of information.

satisfy(p(Argy, Args, ..., Arg,))|operation p can be executed. Each Arg; is an
argument that can be either input or output
to p.

Predicates display and satisfy are combined by an additional connective in
order to express transitions. Some transitions are conditional, where a condition
is defined by a conjunction of predicates. The table below shows different sorts
of transition expressions.

[Expression

[Interpretation

display(ldy, [])
display(ldz, []).

=

A transition from page Id; to page Ids. The empty
list means that the transition is independent of any
information displayed in either pages.

display(ldz, [])

display(ldy, InfoList;) =

+— C.

A transition from page ld; to page Ids is associated
with information in Infolist;. C is a condition which
includes a set of predicates, that is mainly used to
retrieve data from the database to instantiate pieces
of information.

display(lds, [p1(
display(lda, [pa(
satisfy(foo(A,B)

)N =
<_

A
B)])
)

A transition from page Id; to page lds is done via the
execution of operation foo given the input argument
A from page Id;. The result B is displayed in page
Ids.

Using the expressions above, the information flow of our Web site can easily
be described, as illustrated by the example below.

display(ld1, [p1(Info1)]) «

p1(Infoy).

display(ld1, []) = display(ld2, []).

display(ld1, []) = display(ld3, []).

display(ld2, [p2(Infoz)]) = display(ld4, [pa(Infos)]) «
p2(Info2) A satisfy(foo(Infoy, Infoy)).

A graphical view for this example is depicted by Figure 3.

pl

Infol

p2 p4

foo(Info2,Info4)

4.2 Operations

Info2 Infod

p3

Info3

Fig. 3. Information flow

A library of parameterisable components is used to build the operations of the
application. Each component corresponds to a different type of operation, such
as queries, filters, etc, and parameters usually include a name for the operation,
input and output arguments. The construction of operations are based on a
simplified form of techniques editing [9].

The most common sorts of operation that we have encountered in Web site
applications are queries on databases. The following table presents an initial set
of components. These are task specific, so more components would have to be
added to cover a wider range of tasks. Nevertheless, the small set we have now
is surprisingly versatile.

[Expression [Interpretation |

bl_recursion(P, B, N5, N;) |denotes that predicate P defines a recursion over
a fact predicate B with the argument position N
being the starting point of the recursion and Ny
the end point.

filter(P, Ng, N, test(T)) denotes that predicate P filters elements of a list
at argument position Ny by deconstructing that
list and constructing a list of chosen elements at
argument position N.. The test used to filter ele-
ments is the predicate named T.

query(Q, P, Argsin, ArgsOut)|denotes that query predicate Q finds all solutions
for predicate P given a list of input argument
positions Argsln and a list of output arguments
positions ArgsOut. These arguments refer to the
predicate P which must be a fact.

These expressions work by instantiating a program implementation pattern
associated to each sort of component. The parameters serve as an interface to
the operation generation process. The resulting instantiated operation is a CGI
program.

For example, the definition:

query(pubs_by_year, publication, [4], [1,2,3,5])

corresponds to a query operation, called pubs_by_year, that performs a query
on the predicate publication. The query returns values corresponding to the ar-
guments positions [1,2,3,5]. Argument of position 4 is given as input parameter.

The following code correspond to the CGI program (in Prolog) corresponding
to this operation:

main :-
get_form_input(F),
get_form_value(F, year, Y),
pubs_by_year(Y,PublList),
show_page(PubList).

pubs_by_year(Y, PubList) :-
findall([T, A, Ref, Abs], publication(T,A,Ref,Y, Abs), PubList).

Predicates get_form_input, get_form_value and output_html are given by the
Pillow library [2] which provides facilities for generating HTML code for logic
programming systems, including form handlers and Web document parsing.

The predicates above perform the following tasks:

— get_form_input(F): translates input from the form to a list of attributes=value
pairs.

— get_form_value(F, Attribute, Value): gets value Value for a given attribute
Attribute in list F.

— output_html(T): T is a list of HTML terms that are transformed into HTML
code and sent to the standard output. HTML terms have a direct correspon-
dence to Pillow terms.

The first two predicates are used to process the form and get the parameter
to call the query operation pubs_by_year. The result (PubList) is given to a specific
predicate show_page to generate the HTML code corresponding to the resulting
page. The details of this transformation are discussed in section 4.4. A similar
pattern is followed to build filtering and recursing operations.

These descriptions are versatile because they support modifications to the
implementation (via the program pattern) as long as the interface of the com-
ponent remains the same.

4.3 Constraints

The constraints considered in our approach are used to enforce an order of infor-
mation presentation. A very common constraint of this sort appears in electronic
commerce Web sites, where information about the purchase and the total amount
must be displayed before the customer provides the payment information. Simi-
larly, a confirmation of payment must be displayed after checkout.

In order to specify constraints in the order of information display, we use
two concepts from Transaction Logic (TR) [1], serial conjunction and path, that
were adapted to represent the sort of constraints we need. Serial conjunction is
used to represent a sequence of actions. This is written in the form a ® b to
define a path formed of action a followed by action b.

In the Web site context a path is simply a sequence of information display.
Hence constraints on a Web site can be expressed in terms of valid/invalid paths.
Paths can be derived from the site graph, where nodes correspond to pages and
edges correspond to transitions. The site graph is easily built by inspecting the
transition expressions. We assume that a finite number of acyclic paths can be
extracted from the transitions definitions. Figure 4 shows the graph extracted
from the transition specification example given on section 4.1.

The simplest path contains a single element which is a display goal, as defined
earlier. Hence path expressions are of the form:

display(ldy, InfoList;) ® display(lds, InfoLists) ® ... ® display(ld,, InfoList,,)

Another useful concept taken from TR is a special symbol path which corre-
sponds to a sequence of actions of any length. This concept allows us to write
simplified expressions. For example, the expression:

path ® display(ld;, InfolList;) ® display(lds, InfoLists) ® path

pl —— p —— p

Fig. 4. Site graph

denotes any path that displays the page identified by Id; which is immediately
followed by page Id,.

The following table presents some common constraint expressions:

[Expression [Interpretation |

= (path ® — display(p, Info,) ® path)|Information Info, must be displayed be-

® display(q, Info,) ® path) fore information Info,.

= (path ® — display(p, Info,) ® path)|Information Info, must be displayed im-

® display(q, Info,) ® path) mediately before information Info,.

- (path ® display(p, Info,) ® path)|information Info, must be displayed af-
® - display(q, Info,) ® path) ter information Info,,.

- (path @ display(p, Info,) ®&|information Info, should be displayed

- display(q, Info,) ® path) immediately after information Info,,.

Constraint checking can be done by matching paths expressions with con-
straint expressions. Note that the special predicate path matches paths of any
length. For example, consider the following paths:

p1: display(ldy, Info;) ® display(lda, Infos) ® display(ld4, Info,).
p2: display(ldy, Info1) ® display(lds, Infoz).

Now, consider the two following constraints:

c1: — (path ® — display(ldz, Infoy) ® display(ldy, Infos) ® path).
“Information Info, should be displayed before information Info,”.

co: - (path ® — display(lds, Infos) ® display(ldy, Info;) ® path).
“Information Infog should be displayed before information Info;”.

From the specifications above it is possible to conclude that constraint c; is
satisfied. Note that the negation of the constraint means that paths which have
that pattern are not valid. As paths p; and p, cannot match the pattern, they
are valid.

On the other hand, constraint c, is not satisfied because both p; and ps
match the constraint pattern. Informally, it can be verified that in either path
information i; is displayed without i3 being displayed before it.

4.4 Visualisation Issues

Visualisation issues are not the main concern in this work, but we summarise
here the link to visualisation. Recent technologies for the Web such as XML [10]
and style sheets [12] reinforce the idea of separation between Web site content
from its presentational form. In this view, visualisation specification is done by
style sheets, which describe how the information is presented. There are many
activities on defining languages and standards for style sheets, such as CSS [3]
and XSL [11].

Our current implementation translates the logic descriptions into HTML via
Pillow. Since we have a separate description for the visualisation, this description
acts as a style sheet.

We also have a CSS style sheet that defines some presentational attributes,
like font type, font size, text color, background color, etc. These attributes are
also defined by the site designer and are also part of the visualisation description
as simple predicates, that are transformed into the CSS style sheet.

Type information (which appears as part of information content description)
is used to associate each piece of information with a particular style of visuali-
sation. For example, from the expression group-aims(X), we can define a style to
present X, which can be a bullet list, a table or plain text.

Styles are expressed using definite clause grammar rules that transform a
piece of information in a sequence of Pillow terms that are used to produce
HTML code. These expressions have the general form:

style(p(Al, . An)) -> [Tl, . Tm]

where A; is a specific argument value of predicate p and each T; is a Pillow
term corresponding to the visualisation of A;. Some examples of the application
of these expressions are presented in the next section. The architecture of the
system allows replacement of the target languages used to generate the Web
site code. Currently we are using HTML and CSS, but XML and XSL could
also be used. Changes in the target language do not have any impact on the
intermediate representation.

5 Generating Web Site Code

The intermediate representation combined with the visualisation description pro-
vide all the necessary information to produce the site code. Three main steps
are followed to produce the site code: (1) check constraints; (2) given the in-
termediate representation, generate pages structure including content, links and
operation calls and (3) given visualisation descriptions in style sheets map each
page structure into HTML/CSS code.

Here we have the complete transitions specification for the research group
Web site, depicted by Figure 2. The following discussion on code synthesis refers
to this description.

1 display(home, [group_aims(X), contact.info(Y)]) +
group_aims(X) A
contact_info(Y),
home, []) = display(people, []).
home, []) = display(publications,[]).
home, []) = display(projects,][]).

display
display
display
display

AW
~ N~~~

NamesCurr = {N;:person(Ny,current_member)} A
NamesPrev = {Ny:person(Ns,previous_-member)}.
people, []) = display(home, []).
people, []) = display(publications,[]).
people, []) = display(projects,[]).
publications,[pubs_list(Pubs)]) +
Pubs = {[T,AA,R,Year,A]:publication(T,AA R,Year,A)}
publications, []) = display(home,[]).
publications, []) = display(people, []).
publications, []) = display(projects,[])-
projects,[project_titles(AllT)]) «+
AlIT = {T:project(T,Abstract,People)}.
14 display(projects, []) = display(home,[]).
15 display(projects, []) = display(people, []).
16 display(projects, []) = display(publications,[]).
(
(

display
display
display
display

O 00 N O
A~~~ A~

10 display
11 display
12 display
13 display

—_ e~~~

17 display(projects, [project_titles(AllT)]) =
18 display(T,[proj_details(T,A,PI)]) «
T eAlT A
project(T,A,Pl).

Constraints are checked as described in section 4.3. If the site description
conforms with the constraints, the second step is to build a list where each
element describes a structure for each page of the site.

The page structure can be in two different forms depending whether the page
is a static one or generated by an operation (via a CGI program). For static pages
the structure is:

page(ld, Contentlnfo, Links, OperationCalls)

where Id and Contentinfo are the same as defined earlier, but Contentlnfo is
fully instantiated, Links is a list with all page Ids that the current page is linked
to via hyper-links and OperationCalls is a list containing operation names and
their corresponding input arguments.

For pages resulting from operations, the structure is the following:

program(Pld, OperationSpec, Contentlnfo, Links, OperationCalls)

where PId is the identifier of the page, OperationSpec is composed of the
name of the operation and its input/output arguments. The remaining features
are the same as in static page structure.

people, [current_-members(NamesCurr), previous_member(NamesPrev)]) +

As an example of page synthesis, we show the complete synthesis process
for the people page of the Software Systems and Processes Group Web site
at http://www.dai.ed.ac.uk/ joaoc/ssp/ people.html. This is done by using a
generic page definition which is instantiated by the specific transition rules for
the example via path constraints. Our generic page definition is as follows:

page(Pageld, ContentlInfo, Links, OperationCalls) «
ContentInfo = {I | visible(Pageld,l)}
Links = {L | link(Pageld, L)}
OperationCalls = {Op | op_call(Pageld, Op)}

Visible items on the page correspond to any item being displayed on a path.
Formally:

visible(Pageld, I) <+ path ® display(Pageld, S) ® path A1 € S

Links from a page are those page identifiers which may immediately follow
the page on any path. Formally:

link(Pageld, L) < path @ display(Pageld,_) ® display(L,.) ® path
The page structure generated for the example using above definitions is:

page(people, [current_members(['Chris’, 'Dave’, 'Daniela’, 'Jessica’, 'Joao’, 'Vir-
ginia', 'Stefan’, 'Yannis']), previous_members(['Steve’, 'Renaud’, 'Alberto’])], [home,
projects, publications], []).

The lists with previous and current members’ names are instantiated using
rule 5 and having a database containing data for person(Name, Status). Links
are defined in transition rules 6, 7 and 8 and there is no operation call for this
page.

Finally, the style expressions used to map the people page to HTML code
defines the how the information is to be rendered. A general style for all pages
of the site is defeined including the group logo image, colors, etc. For example,
the styles applied to the member lists are:

style(current_members(X)) —> [h2('Current Members'), itemize(X)].
style(previous_-members(X)) —> [h2('Previous Members’), itemize(X)].

We have also defined a specific style for clustered links, called build_navigator,
which given a list of links build a HTML table. The resulting visualisation for
this style is shown in Figure 5, which also present the complete synthesis result
for the people page. The boxes with rounded corners correspond to the page
specifications that come from the page structure and the other boxes show the
styles that are applied to them.

All the other pages of the site are generated in a similar fashion. The current
synthesiser is implemented in Sicstus Prolog 3.5 and the complete example re-
search group Web site can be visited at http://www.dai.ed.ac.uk/~joaoc/ssp/ho-
me.html.

6 Conclusions

A main contribution of this work is to describe a design approach that joins
different levels of description to produce Web sites consistent with a correspond-
ing high level description. Although this approach is domain-specific, we observe
that a large number of current Web sites have similar domain features.

. j - \ — T mEl
[Pageld-people ‘ mle(PageId" [File Edit View Go Communicator Help |

4 ¥ 3 4 . @ S & @

Back Forward Reload Home Search hetscape Print Security Siop

| 6" Bookmarks i Location: frttp /i dai ed. ac. ulc/daidb/peopLeshones/josos/ssp/people. htnl M @I What's Related

[Links = [home, projects, publicationsﬂ

| £ 06lobo £ Estadao 4 B8 4 Bandeiranies £ SIAPEnst 4 Reuters 42 Blaomberg o Oands 4 Prolag Manual

build_navigator(Links, Navigator),
[center(table(Navigator))]

Softwarelsystens] & | Processes] Group

@n of Infarmatics, The University af Edinburgh

\ | home | projects | publiations |
current_members(NamesCurr)

CurrentMembers

» Dave

s s » Joan

[h2(’Current Members’), o vannis

. . » Virginia

itemize(NamesCurr)]. « Daniela
» Jessica

» Stefan

Previous Members

» Steve

[h2(’Previous Members’), o Renaud
. . » Alberto
itemize(NamesPrev)].

| e | projscts | publiations |

(previous_member(NamesPrev)]

1= mE 15 %i aP E 2

Fig. 5. Synthesis result: People page

For these, our approach supports different visualisation descriptions for the
same site specification. These visualisations might be tailored to different classes
of users or to other needs. Changes in the site description without changing
the visualisation specification are also supported. This changes the role of site
maintenance from HTML hacking to alteration of a much simpler domain-specific
problem description, with the site being automatically regenerated from this.

The actual Software System and Processes Group Web Site (which has been
in routine use for the past 3 years) is automatically generated from specifica-
tions similar to those presented here. The cost of developing the synthesiser for

the group site was justified after only a few weeks by the savings in mainte-
nance effort [9]. The site can be visited at http://www.dai.ed.ac.uk/groups/ssp
/index.html.

Acknowledgements

The first author is supported by the Brazilian Government through CAPES
grant no. 1991/97-3.

References

10.

11.

12.

Bonner, A.J. and Kifer, M. Transaction Logic Programming. Technical Report
CSRI-323, Computer Systems Research Institute, University of Toronto. Novem-
ber, 1995.

Cabeza, D. and Hermenegildo, A. WWW Programming using Computa-
tional Logic Systems (and the PiLLoW/CIAO Library). Technical Report,
Computer Science Department, Technical University of Madrid, 1997. In:
http://www.clip.dia.fi.upm.es/miscdocs/pillow/pillow.html

Cascading Style Sheets, level 1. W3C Recommendation December 1996, revised
January 1999. In http://www.w3.org/TR/REC-CSS1

The Common Gateway Interface. In: http://hoohoo.ncsa.uiuc.edu/cgi/
Ferndndez, M., Florescu, D., Kang, J., Levy, A. and Suciu, D. Catching the Boat
with Strudel: Experience with a A Web-site Management System. In SIGMOD
Conference on Management of Data, Seattle, USA, 1998.

Ferndndez, M., Florescu, D., Levy, A. and Suciu, D. Verifying Integrity Con-
straints on Web Sites. Proc. of the 16th International Joint Conference on Arti-
ficial Intelligence - IJCAT’99. Stockholm, Sweden, 1999.

van Harmelen, F. and van der Meer, J. WebMaster: Knowledge-based Verifi-
cation of Web-pages. In: Proc. of the 12th International Conference on Indus-
trial and Engineering Applications of Artificial Intelligence and Expert Systems,
(IEA/AET99), Ali; M. and Iman, I. (eds.), Springer Verlag, LNAI, 1999.

HTML - Hyper Text Markup Language. W3C - World Wide Web Consortium.
In: http://www.w3.org/MarkUp/

Robertson, D. and Augusti, J. Software Blueprints: Lightweight Uses of Logic in
Conceptual Modelling, ACM Press, Addison Wesley Longman, 1999.

Extensible Markup Language (XML) 1.0. W3C Recommendation, February 1998.
In: http://www.w3.org/TR /1998 /REC-xml-19980210

Extensible Stylesheet Language (XSL) Specification. W3C Working Draft, April
1999. In: http://www.w3.org/TR/WD-xsl/

Web Style Sheets. In: http://www.w3.org/Style/

