
Lightweight Semantic Web Oriented

Reasoning in Prolog:

Tableaux Inference for Description Logics

Thomas Herchenröder

T
H

E

U N I V E R S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

Artificial Intelligence

School of Informatics

University of Edinburgh

2006

Abstract

This work presents the reconstruction of a Tableaux-based reasoner for Description

Logics in Prolog. Tableaux-based reasoning is a preferred style of reasoning about Se-

mantic Web ontologies expressed in Description Logics and OWL. We will present

the traditional Tableaux algorithm for Description Logics, discuss some of its proper-

ties and investigate options for its implementation. A refined version of the algorithm

is developed and a concrete implementation in Prolog,tableaux.pl, is proposed and

compared to other implementations, both in terms of design and performance.

i

Acknowledgements

My heartfelt gratitude goes to my supervisors Dave Robertson, Fiona McNeill and

Stephen Potter, who all provided me with guidance, insights and cheerful support. To

Stuart Aitken, who helped resolve questions concerning the Tableaux algorithm, pro-

vided his own implementation for comparison, and who taught me Description Logics

and Tableaux in the first place. To Agnieszka Ciulkin, who undertook the effort of

translating a Polish article about something she had never heard of before. To Adam

Meissner, who helped in the translation of his article and provided me with a complete

and updated version of his Tableaux implementation. To Racer Systems GmbH & Co,

KG, who provided me with a fully functional, educational license for their RacerPro

Description Logics reasoner for the time of my dissertation. To my current employer,

Software AG in Germany, who allowed me a leave of absence to pursue the MSc

programme without me quitting the job. A special acknowledgement goes to F.C.N.

Pereira and S.M.Shieber. Their exceptional book on Prolog and natural language anal-

ysis ([1]) continues to be a source of inspiration and insight into the art of Prolog.

ii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Thomas Herchenröder)

iii

Table of Contents

1 Introduction 1

1.1 Motivation . 1

1.1.1 Background in a Nutshell: From Semantic Web to Tableaux

Reasoning in Prolog . 1

1.1.2 A First Example . 2

1.1.3 Semantic Web Reasoning 2

1.1.4 Why Prolog? . 3

1.2 Goal . 3

1.3 Methods . 3

1.3.1 Features inside and outside the Scope of this Project 4

1.4 Evaluation . 5

1.5 Outputs . 5

1.6 Structure of this Document . 5

2 Description Logics 6

2.1 Description Logics . 6

2.1.1 Grammar . 8

2.1.2 Knowledge Bases . 8

2.2 ... and More . 8

2.3 Relation to OWL . 9

2.3.1 XML Encoding . 10

3 The Tableaux Algorithm 11

3.1 Tableaux – An Overview . 11

3.1.1 Constructive Proofs and ABoxes 13

3.2 The Proof Rules . 15

3.3 Properties . 16

iv

3.4 Non-Deterministic Tree Expansion: AND- and OR-Rules 16

3.5 Non-Deterministic Tree Expansion: Exists-Rule 18

4 Implementing Tableaux 20

4.1 Existing Implementations . 20

4.2 Interpretation of Algorithm . 21

4.3 Ordered Application of Rules vs. Random Application 22

4.3.1 AND and OR Connectives 23

4.3.2 Existentials . 23

4.3.3 Universals . 24

4.4 Replacing Expressions by their Derivatives vs. Just Adding the Deriva-

tives . 24

4.5 The New Rules . 27

4.5.1 AND-Expansion . 27

4.5.2 OR-Expansion . 28

4.5.3 Exists-Expansion . 28

4.5.4 Forall-Expansion . 29

4.5.5 Emptying the Node by Pruning Parent Expressions 29

4.5.6 Summary . 29

4.6 Fringe vs. Whole Tree . 30

4.7 Handling OR Trees . 31

4.8 The Second Condition of the OR Rule 32

4.9 Summary . 33

5 Specification of the Implementation 34

5.1 Goal Construction . 34

5.2 The Basic Tableaux Proof Predicate 35

5.3 Concept Unfolding . 35

5.4 Negative Normal Form . 35

5.5 Expanding the Proof Tree . 36

5.6 Testing the Fringe . 38

5.7 Example . 38

6 Benchmarking the System 41

6.1 The Test Data . 42

6.1.1 T98-sat . 42

v

6.1.2 The Extended Mindswap Testsuite 43

6.2 The Reference Systems . 44

6.2.1 fact.pl . 44

6.2.2 lpdl.pl . 45

6.2.3 RacerPro . 46

6.3 Platform . 47

6.4 Results . 47

6.4.1 Running the Extended MindSwap Tests 47

6.4.2 Running T98-sat:kdum n.alc 50

6.5 Evaluation . 53

7 Conclusions 55

7.1 Future Work . 56

7.1.1 DL Language Extensions . 56

7.1.2 Integration with Rules . 56

7.1.3 Restricted Natural Language Interface 57

7.1.4 Ontology Representations 57

7.1.5 Proof Explanation . 57

7.1.6 Optimisations . 58

7.1.7 XSB Prolog . 58

7.1.8 Concurrent Implementation 58

7.1.9 DIG Interface . 58

A Prolog Code: tableaux.pl 60

B Prolog Code: fact.pl 65

B.1 List of Changes . 67

C Extended Mindswap Tests 69

C.1 Table of Tests . 69

C.2 Contents of Tests . 71

D Supported Ontology Format 81

E Ontology Translation Grammars 82

F Test Driver Scripts 84

vi

Bibliography 89

vii

List of Tables

3.1 Tableaux Inference Rules forALC 14

4.1 Modified Tableaux Inference Rules forALC 28

6.1 Number of Inferences of Prolog Implementations 52

6.2 Runtime Performance of RacerPro and tableaux.pl 53

C.1 The Extended Mindswap Test Suite 71

viii

List of Figures

3.1 Search Space of a Proof . 17

3.2 Proof Tree for two Existentials . 19

3.3 Proof Tree with Expanded Second Existential 19

3.4 Proof Tree with Blocked Second Existential 19

6.1 Comparison of Prolog Implementations 48

6.2 Comparing RacerPro and tableaux.pl on kdum n.alc 50

6.3 Comparing RacerPro and tableaux.pl on kdum p.alc 51

ix

Chapter 1

Introduction

1.1 Motivation

1.1.1 Background in a Nutshell: From Semantic Web to Tableaux

Reasoning in Prolog

The promise of theSemantic Webis to allow machines, programs, to make sense of

Web resources in ways this is only possible for humans today. In order to achieve that,

Web resources like Web pages, images and so on, have to be enriched withmeta-data,

data thatdescribesthe particular resource. The general problem with meta-data to-

day, like the HTMLMETAtag, is that their use is too diverse to do automatic inference

with. In order to make Web resources mechanically comparable, meta-data has to use

common terms and relationsto describe them. They need to draw on common vocab-

ularies. And for many real-world domains, like medicine, biology, physics and law,

such vocabularies exist, albeit again with variations. A common technique to organise

and unify terms that pertain to a certain knowledge domain is to createontologiesfor

this domain, which organise these terms in hierarchical concept trees, together with

attributes and additional relations. A well-established formalism to express ontolo-

gies areDescription Logicsand technologies built upon them, like OWL. Description

Logics provide a logic-based foundation to build ontologies of high complexity and

expressiveness. Once ontologies have been created and meta-data using them to de-

scribe different Web resources has been installed, standard procedures can be deployed

to makeinferencesover the given meta-data, using the common ontology. One of those

standard procedures to reason over Description Logics is theTableaux algorithm, and

this work is about re-creating Tableaux reasoning for Description Logics inProlog.

1

Chapter 1. Introduction 2

1.1.2 A First Example

A simple illustrative example is the following. A person interested in buying a new

car could charge anagentwith this task. The agent would have to roam the Internet

and come back with interesting pages. The agent would come across a Web page

that details about cabriolets. Finding the term “cabriolet” in the page’s meta-data,

and knowing about a vehicle ontology, the agent would then be able to find out that

cabriolets are a special kind of cars, and that therefore this page might be of interest

for its human.

The formal task the agent has to solve here is to find out that the ontology term

“car” (which it started with) and “cabriolet” (which it found for the Web page) are

in a subsumption relation. Rather than trying to traverse a (possibly huge) taxonomy

graph of the car ontology, trying to keep track of parent and child nodes, it uses infer-

ence to answers the query“Are cabriolets a special kind of cars?”; or more formally

“ CabrioletvCar?” ; or even more complex“ Cabrioletu¬Carv⊥?” (all of which

should become clearer later in this thesis). This is a typical scenario for using Descrip-

tion Logics reasoning on the Semantic Web.

1.1.3 Semantic Web Reasoning

Description Logics are a well-investigated, set-theoretical founded subset of First-

Order Logic. They provide means to express concepts (or classes) and their relations

among each other. The simplest representative of this class of logics is calledALC 1

, but many more exist, each with varying degrees of additional language elements

(They are easy to spot since they are conventionally written in script-like letters, such

asALCN ,SH I F or SH OQ (D)). They are interesting for the Semantic Web since

they provide enough expressiveness to be useful, yet retain good computational prop-

erties to be feasible in realistic applications.

There is more than one way to reason about Description Logics, but Tableaux-

based reasoning has proven to be fast and efficient, with a lot of theoretical findings be-

ing applicable to Description Logics, mainly from modal logic. Therefore, Tableaux-

based reasoners are state-of-the-art among available DL/OWL reasoners. Among the

prominent systems are FaCT, Racer and Pellet, which all strive for high performance

and a high coverage of DL language features. Implementation languages for those

1The acronymALC stands for the rather unintuitive term “Attributive Concept Description
Language withComplements”.

Chapter 1. Introduction 3

reasoners include Lisp, Java, C and C++.

1.1.4 Why Prolog?

A Prolog-based implementation explores the strengths of logical, declarative program-

ming on the one hand, building on Prolog’s proverbial strengths in implementing rea-

soners. On the other hand, such an implementation would be usable for other Prolog

programmers who want to integrate Description Logics reasoning in their application.

Particularly, implementers of Semantic Web reasoning agents might be interested in

having a DL reasoner library ready to use. Alternatively, the library could be inte-

grated in validation and reasoning services for particular ontologies, where a small

footprint and easy access to the source code are desirable. Agents could make use of

such a service to solve their reasoning tasks (which is probably more likely than the

agents reasoning themselves).

Other beneficiaries might be end-users that look for an accessible, interactive in-

terface to a standard DL reasoner, to quickly check ontologies and their properties.

And taking it a step further, the reasoner could be integrated with ontology editors like

OilEd and Prot́eǵe, providing an alternative to e.g. Racer.

1.2 Goal

The goal of this thesis is to re-construct a Tableaux reasoner for a basic Description

Logic (ALC) in Prolog, which is usable for end-users and other Prolog programmers

and can be integrated in Semantic Web applications. We want to show the feasibility of

such an implementation, the design options, and compare its performance and runtime

behaviour.

1.3 Methods

The concrete steps to achieve a Prolog implementation of the Tableaux proof algorithm

for Description Logics are:

• Define a program-internal representation for the logic language, to represent

the logical expressions for knowledge bases and queries to the proof predicates.

These will be dedicated Prolog terms.

Chapter 1. Introduction 4

• Implement the proof predicates that reason over the knowledge bases, answering

the queries.

• Discuss and compare the implementation with regard to the literature and other

implementations, considering design alternatives.

• Select and deploy a set of test ontologies and queries to measure and compare

runtime performance.

• Supply necessary tools to convert ontology representations and run test suits.

Information concerning the design and implementation of the reasoner, and the

chosen test cases and the reference systems for the comparison will be detailed in later

chapters.

1.3.1 Features inside and outside the Scope of this Project

Ontology Size. No consideration will be given to issues that come with very large

ontologies (many thousands of classes), which might make the transformation into a

pure in-core representation infeasible on standard hardware.

Ontology Formats. Available ontologies come in various formats, OWL, Lisp-like

or proprietary, to name just a few. The project will only cover filters that transform

data so that it is possible to run the tests and benchmarks.

Query Capabilities. The query interface will only support satisfiability queries that

cover

• a compound concept

• equivalence of two concepts

• subsumption between two concepts

• disjointness of two concepts

• unsatisfiability of a concept

Interfaces. There will be no particular focus on user interface considerations. The

targeted interactive environment is the Prolog shell, which allows access to interface

predicates.

Chapter 1. Introduction 5

1.4 Evaluation

A specification of the implementation will be given, to convince the reader about the

correctness of the implementation. The implementation will be tested by reading in

various ontology definitions and running qualified queries with known outcome against

them. Other implementations will be used to compare runtime performance on these

tests. The outcome of these comparisons will be analysed and commented.

1.5 Outputs

The output of the project is the Prolog code implementing the reasoner and all filters

and interfaces developed alongside, available in the form of Prolog modules (libraries).

Furthermore, there will be results of various tests and benchmarks, and the analyses

thereof.

1.6 Structure of this Document

Chapter 2 continues to discuss the foundations of Description Logics. Chapter 3 in-

troduces the Tableaux algorithm for reasoning with Description Logics. Chapter 4 in-

troduces an implementation of this algorithm and discusses various issues and design

alternatives. Chapter 5 presents a formal specification of the presented implementation.

Chapter 6 continues to compare this implementation with reference systems, evaluat-

ing their runtime performance. Chapter 7 lists possible extensions and enhancements

that could be applied to the current system, and chapter 8 closes with some conclu-

sions.

Chapter 2

Description Logics

2.1 Description Logics

Description Logics [2] are, as the name suggests, a whole family of related logics,

which have a set-theoretical foundation. The most basic one,ALC , can represent

primitive concepts, which are interpreted as sets. They are not further defined in the

logic, but receive their contents through an interpretation (e.g. a model). The logic

provides the default concepts “bottom” (⊥), the empty set, and “top” (>), the uni-

verse. Moreover, it lets one name binary relations called roles that hold between con-

cepts. In DL formulae, concepts and roles are usually denoted with uppercase letters

(A,B,C, . . .).

Role expressions and concept formation operators let you construct further con-

cepts from primitive ones. The operators are negation (¬), union (t), intersection (u),

value restriction (∀) and existential restriction (∃). Negation, union and intersection

take the usual intuitive meanings. Universals and existentials follow a slightly different

notion from first-order logic. Basically, they describe concepts as sets of individuals

that are characterised (or “restricted”) by the individuals they relate to through a given

relation. Value (or universal) restriction is formally defined as

∀R.C = { x | ∀y. R(x,y)⇒ y ∈ C }.

This is the set of all individuals that, if they take part in theR relation at all, are related

throughR to only individuals of the conceptC.1

1This gives rise to a somewhat counter-intuitive property of Description Logics, by which individuals
that are not at all in the domain ofR qualify for the universal restriction, due to an implication being
true when its premise is false. As a consequence,∀R.C and∀R.¬C are not necessarily contradictory, i.e.
∀R.Cu∀R.¬C might be non-empty.

6

Chapter 2. Description Logics 7

Existential restriction is formally defined as

∃R.C = { x | ∃y. R(x,y)∧ y ∈ C }.

This is the set of all individuals that are related throughR to at least one individual of

the conceptC. A member of this set has to be from the domain ofR, and at least one

of its relational values has to be a member ofC.

Here are a few examples:

• ¬C Everything that is outside ofC; or in set-theoretical terms, the com-

plement ofC

• CtD The concept represented by the union ofC andD (C ‘or’ D logically)

• CuD C intersected withD (C ‘and’ D logically)

• ∃R.C The set of all individuals that are in relationR to at least one individ-

ual from conceptC

• ∀R.C The set of all individuals that are in relationR to only individuals

from conceptC
With these operators you can construct arbitrary complex concept expressions. To

use such concept expressions for axioms, two further operators are introduced: sub-

sumption (v) and equivalence (≡). This allows you to relate concept expression to one

another:

Cv D

C≡ D

The interpretation of a subsumption expression like the one above is that D is a

necessarycondition for C (sometimes also expressed as “D→ C”). Complex concept

expressions can be used to define new concepts, using the equivalence operator (≡),

e.g.E≡CuD. To contrast with complex expressions (i.e. expressions containing roles

or constructors),C,D andE are calledatomicconcepts. Atomic concepts that have no

defining axiom (i.e. they are simply “there”) are calledprimitive. The interpretation of

a defining expression like the one above is that the expression on the right hand side is

necessary and sufficientfor the left hand side.

Description Logics represent subsets of first-order logic, with decision procedures

that are tractable and have known computational complexity. This makes them in-

teresting for automatic reasoning, while the semantics of formulae is provided by a

well-defined model theory.

Chapter 2. Description Logics 8

2.1.1 Grammar

Here is the grammar for the various expressions ([3, lect.3], but also cf. e.g. [4, p.

51,55]):

Concept expression ::⊥ |>|CN|¬C|CtD|CuD|∃R.C|∀R.C

Terminological axiom :: C≡ D|Cv D

whereCN is a primitive concept (“concept name”),C andD are arbitrary concepts,

andR is a role.

2.1.2 Knowledge Bases

Knowledge bases expressed in Description Logics are usually divided into two sections

• TheTBox(“terminology”), which contains the terminological axioms, i.e. state-

ments that give the basic relations between concepts in terms of equivalence or

subsumption.

• TheABox(“assertions”), which assigns concrete individuals to concepts (Ben∈
Giraffe), and lists relations between individuals (loves(Yogi,Henriette)). ABoxes

as part of a given knowledge base are not further considered in this text2.

Given such a knowledge base and a DL reasoner, the KB can then be queried,

either using DL expressions representing concepts in the given logic, or by specific

meta-queries such as whether the TBox as a whole is consistent, or to construct a

complete subsumption hierarchy of the contained concepts. These query capabilities

depend on the reasoner at hand.

2.2 ... and More

This basic Description Logic,ALC , can be extended in various ways to add expres-

siveness while still retaining good computational properties. Common extensions are

(cf. also [5, pp.39–41]):

• cardinality constraints– where the cardinality of the relation is constraint in a

“not less than” (e.g. “≥ 2 hasChildren” for people who have 2 or more chil-

dren) or “no more than” (e.g. “≤ 3 hasCars” for people who have no more

2But see section 3.1.1.

Chapter 2. Description Logics 9

than 3 cars) way. Both constraints come in an unqualified and a qualified vari-

ant, where the range of the relation is further restricted to a given concept (e.g.

“≤ 3 hasCars.Cabriolet”).

• transitive and inverse roles– where roles are closed under transitivity, and where

you can specify a role to be the inverse of another role (“hasPart” – “isPartOf”).

• functional roles– where each individual of the relation domain has at most one

relation to an individual from the relation range (“hasMother”).

• role hierarchies– whererolesare in a subsumption hierarchy (e.g.hasParentv
hasAncestor).

• nominals– where named individuals can occur in concepts (“PrimeMinister≡
{ tony blair }”).

• enumeration sets– where concepts can be enumerated in a finite set (Weekday

≡ { monday, tuesday, wednesday, thursday, friday, saturday, sunday}; often

used in conjunction with nominals.

• data types– where data types such as integer and strings are added to the lan-

guage, e.g. to express data type constraints on objects.

These extensions lead to Description Logics such asALC (D), SH I F , SH OI N ,

SH OQ (D) and many others3.

2.3 Relation to OWL

OWL [6] can be looked at as an encoding for certain Description Logics [7, p.4],

mainly basing it on theSH family of Description Logics [7, p.6]. The W3C defines

three levels of OWL:

• OWL Light– which representsSH I F (D), which isALC with transitive, func-

tional and inverse roles, role hierarchies and data types; this is the language level

current reasoners like FaCT and Racer work on. The language is of worst-case

deterministic EXPTime complexity [7, p.19].

3The “Description Logic Complexity Navigator”, http://www.cs.man.ac.uk/∼ezolin/logic/-
complexity.html, is a nice and intuitive way to explore these mappings between language extensions
and acronyms.

Chapter 2. Description Logics 10

• OWL DL – which representsSH OI N (D), which is ALC with transitive and

inverse roles, role hierarchies, unqualified cardinality constraints, nominals and

data types. The language is of worst-case non-deterministic EXPTime complex-

ity [7, p.19].

• OWL Full – which allows a maximum of freedom, with no computational guar-

anties; concepts can be seen as sets or individuals in their own right; the language

can be extended by the user; close to FOL.

2.3.1 XML Encoding

From a syntactic point of view, OWL is built on top of XML and RDF(S). From XML

it inherits the core syntactic structure, such as entities and the structure and nesting of

opening and closing tags. From RDF(S) it inherits schema elements such as rdf:type

and rdfs:subClassOf. I will not go into detail of these technicalities, but just to give

you a flavour of what “real-life” OWL looks like, here is a brief example.

Suppose you wanted to model the set of people, at least one of who’s parents is a

physician, but who themselves are not physicians. In DL you would express this as

∃hasParent.Physicianu¬Physician

In OWL, this would look somewhat like this:

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Restriction>

<owl:onProperty rdf:resource="#hasParent" />

<owl:someValuesFrom rdf:resource="#Physician" />

</owl:Restriction>

<owl:Class>

<owl:complementOf>

<owl:Class rdf:about="#Physician"/>

</owl:complementOf>

</owl:Class>

</owl:intersectionOf>

</owl:Class>

This may give you an impression of how OWL encodes logical expressions.

Chapter 3

The Tableaux Algorithm

3.1 Tableaux – An Overview

The historical development of Description Logics languages and corresponding sub-

sumption algorithms tried to tackle the fine line between expressiveness of the lan-

guage and tractability of the algorithm [8, p. 6]. Early proposals were the structural

subsumption algorithms (ibid.), which proved to be complete only for very inexpres-

sive DLs. Baader and Sattler state that the CLASSIC system used “a restricted DL that

still allowed for an (almost) complete polynomial structural subsumption algorithm”

(ibid.).

The Tableaux (also “Tableau”) algorithm is explained e.g. in Baader et al. [9].

Interesting hypotheses in DL include satisfiability (whether a concept is non-empty in

the model), subsumption (whether one concept subsumes another), equivalence and

disjointness of two concepts. All these relations can be reduced to either subsumption

or unsatisfiability. The Tableaux algorithm is a procedure to decide unsatisfiability, i.e.

the initial formula is re-written as a corresponding formula that makes it possible to

test for satisfiability. For instance, the hypothesisCv D leads to the goalCu¬D, its

inverse, since a conceptC is subsumed by another conceptD iff the intersection of

C with the complement ofD is empty. But the second expression can be tested for

satisfiability, i.e. it can be tested whether the intersection between the two concepts

is empty or non-empty. This is not possible with the first expression (which would

require to show that each individual inC is necessarily also inD, in order to prove the

hypothesis). But falsifying (i.e. proving the non-satsifiability of) the second expression

proves the satisfiability of the first.

Hypotheses (“queries”) therefore undergo a set of transformational steps, before

11

Chapter 3. The Tableaux Algorithm 12

the basic proof algorithm sets in. These steps are:

1. Recursively replacing all concepts by their definitions, until only primitive con-

cepts are in the formula (also called “unfolding” or “TBox-elimination”).

2. Transforming the main relation into a corresponding expression that allows for

satisfiability testing. The resulting formula is called thegoal.

3. Putting the expression into Negation Normal Form, where all negations move

“inwards” in subexpressions, until only primitive concepts are negated.

Now the Tableaux algorithm can start. In its most basic form it uses four rules to

come to a decision: intersection elimination, union elimination, existential elimination

and universal elimination. The goal is considered the label of the root node of a proof

tree. Then, application of the proof rules transform the node, add elements to its label

set, and spawn new nodes expanding the tree structure where the application of rules

is repeated. This is continued until no more rules can be applied to any of the nodes

in the tree. At this point, the proof tree (or the “tableaux”) is said to besaturated. If

any of the branches of the tree contains an obvious contradiction, that is an expression

C and its negation¬C, this branch is said to beclosed. Branches where this is not the

case are calledopen. The initial goal of the proof issatisfiableiff the tree does not

contain any closed branches.

The first two rules, intersection elimination and union elimination (alsoand- and

or-elimination), operate directly on the formulae of the current node. The application

of the intersection rule adds the two operands to the node’s label set, i.e. to the set of DL

expressions that are associated with this node. Union connectives allow the addition

of their first operand, and if the whole tree fails, the addition of their second operand

is tried as an alternative. The following short hand shall give you a first impression of

the two rules (all rules are introduced more formally in the next section):

• x : {...CuD...} 7−→ x : {...C,D...}

• x : {...CtD...} 7−→ x : {...C, ...} or x : {...D, ...}

x identifies the current node, the list in braces denotes its node label, consisting of

various Description Logics expressions. In the first example, the node label contains

an intersection. Applying theand-rule transforms the node label to the expression to

the right of the arrow: the two operands of the intersection are added as individual

Chapter 3. The Tableaux Algorithm 13

members to the node label. Similarly, in the second example theor-rule adds its first

or second operand to the node’s label.

The existential elimination creates an edge and a new node, thereby extending the

proof tree. The edge is labelled with the role name that was governed by the existential.

The restricting concept of the existential is carried over to the new node. The universal

elimination depends on an existing edge which is labelled with the name of the role

governed by the universal. Then the restricting concept of the universal is carried over

to the corresponding node, if this node does not contain it already. In short, for nodes

x and y and an edge labelled with R, the result of the two operations would be:

• x : {...∃R.C...} 7−→ x : {...}—R— y : {C}

• x : {...∀R.C...}—R— y : {...} 7−→ x : {...}—R— y : {...,C}

In the first example, the nodex contains an existential expression in its node label.

Applying existential elimination (shown to the right of the arrow), the node gets a

child nodey, connected by an edge which is labelled with the name of the existential’s

relationR. The existential’s concept,C, is the initial contents ofy’s node label. In the

second example,x contains a universal expression, and is additionally connected to a

child nodey through an edge that has the same name as the universal’s relation. Then

universal elimination can be applied, leading to the situation to the right of the arrow,

where the universal’s concept expressionC is added to the child’s node label.

The process is carried on, until there are no more rules to apply (i.e. until the

tableaux is saturated). If a contradiction shows up on any of the branches of the tree,

listing both a concept and its complement in the same node, that closes the tableaux and

proves the unsatisfiability of the goal. If this is not the case, then there is a satisfying

model for the goal.

Appropriate conclusions have to be drawn to answer the initial hypothesis. For

instance, in the above example,Cv D would be true, ifCu¬D is unsatisfiable. The

complete list of rules is given in Table 3.1, a worked-out example of their application

in section 5.7.

3.1.1 Constructive Proofs and ABoxes

The proof procedure is constructive, in that upon success the constructed tree rep-

resents a satisfying model. The nodes represent individuals (i.e. the constraints that

characterise them), and the edges represent the relations among them. In DL terms,

Chapter 3. The Tableaux Algorithm 14

u− rule i f 1. (C1uC2) ∈ L(x)

2. {C1,C2} 6⊆ L(x)

then L(x)−→ L(x)∪{C1,C2}
t− rule i f 1. (C1tC2) ∈ L(x)

2. {C1,C2}∩L(x) = /0
then a. saveT

b. tryL(x)−→ L(x)∪{C1}
If that leads to a clash then restoreT and

c. tryL(x)−→ L(x)∪{C2}
∃− rule i f 1. ∃R.C∈ L(x)

2. there is noy s.t. L(〈x,y〉) = R andC∈ L(y)

then create a new nodey and edge〈x,y〉
with L(y) = {C} andL(〈x,y〉) = R

∀− rule i f 1. ∀R.C∈ L(x)

2. there is somey s.t. L(〈x,y〉) = R andC /∈ L(y)

then L(y)−→ L(y)∪{C}

Table 3.1: Tableaux Inference Rules for ALC [5, p. 48]

this would be constructing an ABox. Especially Baader uses this nomenclature in his

publications to signify the various trees created during a proof (e.g. [10, 8, 4]). This

can be a little confusing, because all we are doing here isTBox-reasoning(cf. p. 8).

This means that the knowledge base we are reasoning over contains only a TBox, a set

of terminology axioms.ALC has no means in the language to express an ABox, and

the given algorithm does not handle ABox statements in the proof.

To illustrate this, here is an example. The knowledge base

Gira f f evMammal

Ben∈Gira f f e

likes(Ben,Ben)

has a TBox, expressing that giraffes are subsumed by mammals, and an ABox, saying

that the individual Ben is a giraffe (instance) and that he likes himself (relation).ALC
cannot express the second and third statement, and the given Tableaux algorithm could

not reason with them. Nevertheless the proof procedure does construct individuals and

relations among them. The formalisation of the rules refers to those individuals with

arbitrary (hence usually unintuitive) names (x, y, z, . . .), and during the proof they are

Chapter 3. The Tableaux Algorithm 15

just represented by their individual nodes in the tree and the contained node labels,

which lists their defining constraints. The edges in the tree represent the relations

between those individuals. Hence, this can be regarded an (constructed, rather than

provided) ABox.

3.2 The Proof Rules

The rules of Table 3.1 represent the inference rules for the basicALC Description

Logic. Adding operators and constructors to the language leads to additional rules for

the proof algorithm that take care of these additional elements (e.g. for cardinality con-

straints [4, p.85]). Other variants for proof rules exist that seek to optimise inference

performance (cf. e.g. [5, chap.6]).

In Table 3.1,C,C1 andC2 are arbitrary DL concepts,R is a relation,T denotes

the whole proof tree, whilex andy denote specific nodes in the tree. Finally,L(x)

signifies the node label of nodex, which is the set of DL formulae associated with

this node. Each rule has two preconditions (thei f part) and an action (thethenpart).

Preconditions test the applicability of the rule. The first condition in each rule simply

ascertains the availability of an appropriate term to apply the rule to (which can be

thought of as a term in the head of a clause that is used for pattern matching). The

second rule adds more specific tests for each rule that usually check whether the results

of applying the rule already exist in the given node. The action part describes the actual

changes performed when applying the rule. Below I give an informal description of

each rule.

Theu-rule applies to intersection terms within a given node label. The second

condition makes sure that both operands are not already available in the current node

label. The action part adds both operands as new members to the set that constitutes

the label of the current node.

Thet-rule applies to union terms within the given node label. The second con-

dition makes sure that none of the operands are already available in the current node

label. The action part adds the first operand as a new member to the node label. If

this tree eventually fails, the original tree at this point in the proof is restored and the

second operand is added to the node label, to attempt satisfiability of this alternative

tree.

The∃-rule applies to existential restriction terms in a node label. The second con-

dition tests for an identical edge to an existing child node, and an identical concept

Chapter 3. The Tableaux Algorithm 16

within that child. If either part of the condition is false, the action part of the rule cre-

ates a new node and a new edge to this node labelled by the relation. The constraining

concept of the existential becomes the initial concept in the new node’s label.

The∀-rule applies to universal restriction terms in a node label. The second con-

dition searches for an existing child node with identical edge label, but without the

constraining concept of the universal. If such a child node is found, the constraining

concept is added to the child’s node label.

3.3 Properties

The Tableaux algorithm given in Tab. 3.1 is sound and complete, and will always

terminate using exponential time and space complexity (cf. e.g. [8, p.12]).

Theterminationproperty derives from the fact that the algorithm only adds subex-

pressions of the initial formula, which are strictly smaller than their parent expression.

Since the initial expression is finite, there are only so many subexpressions to expand.

Branching factor and depth of the proof tree depend on the number of existentials in

the initial formula, which again is limited. Loops in expanding terms are prohibited by

the rule conditions.

Soundnessandcompletenessrely on the equivalence of the satisfiability of the ini-

tial formula and the consistency of the saturated proof trees, which can be shown in

part by induction using acanonical modeland exploiting thefinite tree modelprop-

erty [8, p.13].Complexityof the algorithm is exponential in time and space for certain

initial formulae (worst-case, cf. again [8, p.13]).

3.4 Non-Deterministic Tree Expansion: AND- and OR-

Rules

One thing to notice when looking at the Tableaux algorithm at work is that its expan-

sion of the proof tree is not deterministic. It is not only not deterministic in the way

the tree unfolds due to non-deterministic choices in the order of the rule applications,

it is also non-deterministic in the set of trees it creates and the shape of the individual

trees.

Consider the following example. Let{(Pu∀R.¬P), (Pt∃R.P)} be the label of

the root node in our proof tree. The two available expressions are an intersection and a

Chapter 3. The Tableaux Algorithm 17

union expression. There is no constraint on which to choose first for a rule application.

But depending on whether you choose to eliminate the intersection or the union first,

you get different proof trees (Fig. 3.1).

{(Pu∀R.¬P), (Pt∃R.P)}

©©©©©©©©©©

HHHHHHHHHH

and-elimination

{P, ∀R.¬P, (Pt∃R.P)}

[model]

or-elimination

©©©©©©©©

HHHHHHHH

{(Pu∀R.¬P), P}

and-elimination

{P, ∀R.¬P}

[model]

{(Pu∀R.¬P), ∃R.P}

and-elimination

{P, ∀R.¬P, ∃R.P}

exist-elimination, f orall -elimination

{P, ¬P}

[clash]

Figure 3.1: Search Space of a Proof, Depending on Rule Choice

Note: This doesnot represent the logicalproof tree, as created by rule applications, but

thesearch treeof the algorithm, showing fringe nodes interlaced with rules applied.

The important aspect is the choice of theand- or or-rule on the first level. One

leads to a single tree (with a single branch), the other to two alternative trees (each

with a single branch). As you can see, choosingand-elimination first leads to a node

where no more rules can be applied (theor is blocked due to the presence ofP in the

node). Since there is no obvious contradiction, this constitutes a model: the initial goal

is satisfiable.

Choosing theor-rule first gives you an entirely different picture. The proof tree is

split into two, the left of which leads to a model and the right leads to a clash. Since

a single open tree among alternative trees is enough for a successful proof, the result

here is the same: the goal is satisfiable. But the difference in how the proof evolves is

significant. Choosing theand-rule first leads to a single tree, with a single branch of

Chapter 3. The Tableaux Algorithm 18

depth 1. Choosing theor-rule first leads to two alternative trees, both single-branched,

the first of which has depth 1, and the other having depth 2.

Given the soundness and completeness results of the algorithm, that means that all

those possible variants in proof evolution are insignificant for the proof result1. But

seen as a rewrite system, the Tableaux rules are not confluent, i.e. exhaustive applica-

tion of the rules on a given node does not necessarily always lead to the same saturated

tree or set of trees. The proof tree evolves differently, depending on the rewrite rule you

choose to apply. There is no “canonical form” to which all trees eventually converge,

over possibly different intermediate stages. In other words: Even in proofs where there

is no union elimination (and therefore no alternative trees to test), the proof rules do

not construct a unique model. This is further explained in the next section.

However, since the constructed model is not significant for the decision procedure,

which is only concerned with success or failure, these differences do not interfere with

the proof result. Nevertheless, they might be interesting from a computational point of

view, where one might be interested in finding e.g. aminimalmodel for performance

reasons.

3.5 Non-Deterministic Tree Expansion: Exists-Rule

The the second condition on the∃-rule deserves special attention. The condition, which

requires that

“ there is noy s.t. L(〈x,y〉) = R andC∈ L(y)” [p. 14]

concerns existing child nodes of the node under investigation. The first part looks at

the relation that labels the relation between parent and child, and checks whether the

relation is the same as that of the existential under investigation. If there is no such

child, a new child node may be created.

If, on the other hand, a child node with such a relation exists, the next question is

whether the existential’s concept,C, is already contained in the child node’s label. If

so, the expansion of the existential is blocked. If not, again a new node may be created,

connected to the current node by the same relation edge. The new node represents a

different individual. Only through this interpretation of the rule, obviously satisfiable

concepts produce a successful proof and a constructed model such as one would expect,

as in Fig. 3.2.

1Try changing the initial expression in the example to get a clash in theand variant, and you get

Chapter 3. The Tableaux Algorithm 19

{∃R.P, ∃R.¬P}
©© HH

{P} {¬P}
Figure 3.2: Proof Tree for two Existentials ranging over the same Relation

But since again the order of rule application is open, a child might contain a non-

expanded expression thatcontainsthe relevant conceptC, e.g.{PuC}. Now, the test

C∈ L(y) fails, and a new node is created (Fig. 3.3). A later expansion of the intersec-

tion in the child node would reveal the concept that then would block the expansion of

the parent’s existential. But at that point the second child is already created. Fig. 3.4

shows the situation, if the child node is expanded first, and therefore the expansion of

the second existential in the parent is blocked.

{∃R.(PuC), ∃R.C}
©©© HHH

{PuC} {C}
Figure 3.3: Proof Tree with Expanded Second Existential due to “hidden” C in Child

{∃R.(PuC), ∃R.C}

{P, C}
Figure 3.4: Proof Tree with Blocked Second Existential after and-expansion in the Child

The examples from this and the previous section show how differently a proof tree

might evolve, depending on the choice and the order of rule applications. Significantly

different proof trees emerge. The theoretical result for the Tableaux algorithm assure

its soundness, but these observations reveal that there is a lot of variation going on

“under the hood”.

clashes in all trees of theor variant.

Chapter 4

Implementing Tableaux

4.1 Existing Implementations

Structural subsumption algorithms for Description Logics have been discussed since

the 1980s, but the initial results were found to be incomplete for more expressive DLs.

The first tableaux algorithm which successfully overcame these limitations was pro-

posed by Schmidt-Schauß and Smolka [11, 1991]. A general overview of the field can

be found in [8]. Various implementations have since then deployed tableaux reason-

ing, both in the commercial and non-commercial sector, such as Racer [12], Pellet1 and

FaCT [13]. These systems use Lisp, Java or C++ as their implementation language.

On the other hand, implementing tableaux-based reasoning in Prolog has been pro-

posed, e.g. by Beckert and Posegga [14], without specifically applying it to Description

Logics. An interesting approach is offered by SWI Prolog [15] from the University of

Amsterdam that comes in its current version with an RDF and Semantic Web library.

But the RDF implementation seems to focus on storing and querying of RDF triples,

and the documentation of the SemWeb package states that there is only limited support

for OWL reasoning, which is outside the standard distribution in the Triple202 ontol-

ogy editor. So far, there is no hint to be found in the Triple20 documentation as to

which inference algorithm it uses.

A single publication specifically addresses the implementation of a Description

Logics variant, namelyALCN , in Prolog, Adam Meissner’s 2004 paper “An auto-

mated deduction system for description logic with ALCN language” [16]. He imple-

mented Tableaux following the original definitions of the algorithm very closely and

1http://www.mindswap.org/2003/pellet/
2http://www.swi-prolog.org/packages/Triple20/

20

Chapter 4. Implementing Tableaux 21

will be a reference for our work. Meissner also provided us with a complete and up-

dated version of the code presented in his paper [17].

Stuart Aitken of the University of Edinburgh was kind enough to provide the author

with an unpublished implementation of Tableaux in Prolog [18], which will also be

used in the following discussions. To the best of our knowledge there has been no

other work published that implements DL reasoning with Tableaux in Prolog.

4.2 Interpretation of Algorithm

Aitken [18] and Meissner [17] follow a traditional recursive approach and explore

one particular tree (depth-first) before evaluating the alternative one, when hitting a

disjunction. That allows them to be concerned with only one tree at any one time,

relying on backtracking to unwind to the choicepoint and take the alternative route.

Baader [10], in contrast, proposes a structure which keeps track of all the variant trees

at the same time, leaving it to the specific implementation as to which of those trees

are further unfolded.

This approach makes one aspect of the algorithm very clear: every single one of

these trees provides a model if it is completely clash-free, i.e. the relation of the leaf

nodes in a single tree is ‘and’ when it comes to evaluation. A proof tree might become

arbitrarily deep, with multiple branches ending in a leaf node. Each leaf node either

contains a clash, or cannot be expanded further. From each such leaf node a path leads

back up to the root node. Each such path is considered a branch in the proof tree. A

proof tree is considered “open” or clash-free, when there are only open branches. That

means that the predicate “open(Tree)” for a saturated tree is given by “open(Tree) =

open(Branch1) and open(Branch2) and . . . and open(BranchN)” for all N branches of

the tree.

But looking at the set of the various trees that stem from resolving disjunctions in

the node labels, it is enough that only one of them provides a model in order to achieve

satisfiability for the initial DL formula, i.e. the relation among the various trees is ‘or’:

“satisfiable(Formula) = open(Tree1) or open(Tree2) or . . . or open(TreeK)” for all K

trees that were constructed during the proof.

This leaves room for implementation decisions. The recursive approach saves run-

time memory, since it only concerns itself with a single tree at any one time. Only

when the current tree has a clash is an alternative tree inspected. In terms of runtime,

this is fine if a model is found early on in a “left-most”, depth-first search of the search

Chapter 4. Implementing Tableaux 22

space.

Maintaining the set of alternative trees at the same time allows for the application of

heuristics. Which tree might be the biggest (fully expanded)? Since this will consume

the most processing resources and a smaller tree might give you the necessary model

faster, you might want to leave bigger trees for last. Which tree is the likeliest to

provide a model? Since you can neglect all other trees once you have found an open

tree, you might want to explore this first.

The most important thing to note for the algorithm here is that the tree being

evolved is ‘and’ed, but alternative trees are ‘or’d. All branches of a single proof tree,

resulting from the application of rules in the logic, have to be clash-free. The search

space of the algorithm, consisting of possibly multiple trees, needs just one clash-free

tree in order to succeed.

4.3 Ordered Application of Rules vs. Random Applica-

tion

The original definition of the Tableaux algorithm (cf. [5, 4]) just lists the comple-

tion rules and makes no assumption about the order of their application. This has the

nice theoretical property of keeping the algorithm as simple and as free of unessential

preconditions as possible. But in a concrete implementation, ordering of the rule ap-

plications provides significant advantages. Baader and Sattler show that it reduces the

worst-case space requirements of the algorithm to polynomial (PSPACE-complete) [8,

pp.13f]. They summarise it by stating about the modified algorithm that

“... it starts withC0(x0) and

1. applies the→u- and→t-rules as long as possible and checks for clashes;

2. generates all the necessary direct successors ofx0 using the→ ∃-rule and

exhaustively applies the→∀-rule to the corresponding role assertions;

3. successively handles the successors in the same way.” [8, p.14]

This section discusses this approach.

Chapter 4. Implementing Tableaux 23

4.3.1 AND and OR Connectives

An exhaustive application of theu-rule andt-rule ensures that the maximum number

of elements are available for later∃- and∀-expansions. Since existential and universal

elimination only operate on new child nodes, that means that eliminating all possible

‘and’ and ‘or’ connectives first in a single node will allow you to concentrate on the

subsequent quantifier elimination of that node. No surprises can happen in the form of

new elements becoming available later in that node that might be significant for later

proof steps (e.g. if a forall elimination is blocked due to a suitable child node and arc

missing, which would become available later from an ‘and’ elimination that sets free

the required existential).

As an example, the node

{(∃R.AuB)u∀R.C}
can be completed by first applying the and-rule (which is the only applicable rule at

this stage), which gives you

{(∃R.AuB), ∀R.C}
The f orall -rule is blocked at this stage, although there is a suitable existential ‘hidden’

in the remainingand-term. Under the classical algorithm, thef orall just has to “wait”,

until eventually theand-rule is applied, and the existential is freed:

{∃R.A, B, ∀R.C}
Now the existential can be expanded, and then finally thef orall -term, giving you a

new child node with two constraints

{∃R.A, B, ∀R.C}, {A, C}
This means it is advisable to expand all possibleand- andor-terms in a node, so

that all nested terms are available when proceeding to quantifier elimination.

4.3.2 Existentials

In the next stage of processing the elements of a node, an exhaustive application of

the∃-rule ensures that the maximum number of edges are available for subsequent∀-
expansions. In the above example, the forall-term remains blocked until the existential

is expanded. Only then are the preconditions for thef orall -rule met. It therefore

makes sense to expand all existential terms in a node exhaustively, before proceeding

to the f orall -terms.

Chapter 4. Implementing Tableaux 24

4.3.3 Universals

Since each∀-expansion depends on the availability of a suitable edge, this rule should

be applied last. If all existentials have been expanded, you can decide for each forall-

term whether it is expandable or not. There is nothing that can happen in the further

course of the proof that may invalidate this decision, specifically blocked universals of

this node remain blocked.

This order ofand/or-expansion, existential expansion, and then universal expan-

sion allows for each possible element to be expanded in a single step, minimising on

rule application attempts, without damaging the correctness of the proof. I will take

advantage of this fact in the following sections.

4.4 Replacing Expressions by their Derivatives vs. Just

Adding the Derivatives

Standard Tableaux justaddsnew elements to the proof tree, when applying its comple-

tion rules (cf. Tab 3.1 p. 14). These are either new elements for existing nodes (and-,

or- and f orall -rule), or new nodes that are children of existing ones (exist-rule). All

previous elements are retained, at the node level as well as the tree level.

Here is another simple example to illustrate this. An initial DL expression will

form the initial single member of the set, say

{Au (Bu (CuD))}

Applying the and-rule gives you two new members of the set, the operands of the

intersection,in addition to the initial member. That is, after applying theand-rule the

set looks like

{A, Bu (CuD), Au (Bu (CuD))}

Theand-rule can again be applied to the second member (Note that itcannot be ap-

plied again to the initial (now third) expression, due to the rule’s precondition that

checks for the presence of the operands). This again gives us the new members in

addition to the old ones, namely the set

{A, B, CuD, Bu (CuD), Au (Bu (CuD))}

Chapter 4. Implementing Tableaux 25

Continuously applying theand-rule to the new member of the set (no application on

the same expression twice) eventually gives you the following set:

{A, B, C, D, CuD, Bu (CuD), Au (Bu (CuD))}

The proof tree is saturated, you cannot apply any more rules. As you can see, the single

proof node contains the fully expanded members, A, B, C, and D, as you would ex-

pect. But it also contains the initial expression, as well as all intermediate expressions

created during the completion process.

But the initial expression and all intermediate expressions (all the “parent” expres-

sions so to speak)do not contribute any further to the decision procedure.

If we apply an ordered application of rules, as described above, there is no

need to retain a DL expression once we have expanded it; in fact as soon

as we have evaluated it for expansion, whether the expansion was possible

or not, it can be discarded.

It is therefore safe to discard them, and replace them by their derivatives. More-

over, if you remove evaluated terms from the proof tree, this prevents you from check-

ing these expressions over and over again, making the second precondition for each

derivation rule (cf. Tab. 3.1, p.14) essentially redundant. The second precondition

of theu-, t- and∃-rule and the second part of the second precondition of the∀-rule

all test for the presence of facts that their corresponding action will produce once it is

executed. Theand- andor-rules also test for the presence of their operands (to various

degrees of completeness), theexist-rule condition checks for the presence of edges and

child nodes, and thef orall -rule checks for the presence of a concept in the child nodes.

This all helps to avoid expanding the same compound term over and over again, which

would invalidate the termination of the algorithm. “The second condition in each rule

constitutes a control strategy which ensures that the algorithm does not fail to termi-

nate due to an infinite repetition of the same expansion.” (Horrocks [5, p.48] - but see

also section 4.8). Pruning the parent expression after its expansion simply avoids this

problem altogether.

For the inference rules, this means rather than just adding new expressions derived

from more complex ones, you replace the complex expression by its derivative(s). In

particular, before adding the derivative of a rule application to some node label (using

the set union operator “∪”) in the rule actions, the parent term is removed from the

node label (expressed by the set minus operator “\”). The modified consequent for

theand-rule would look likeL(x)−→ (L(x)\{CuD})∪{C,D}. Theor-rule would

Chapter 4. Implementing Tableaux 26

change intoL(x)−→ (L(x)\{CtD})∪{C} for the one alternative and intoL(x)−→
(L(x) \ {CtD})∪{D} for the other. The existential rule would be augmented with

L(x)−→ L(x)\{∃R.C} in the consequent, and thef orall -rule with an expression like

L(x)−→ L(x)\{∀R.C}. A complete list of the modified rules is given in Tab. 4.1.

Since these modified Tableaux rules delete old expressions in the proof tree, I

call themparsimonious rules. Aitken presented this variant [3] and used it in his

implementation[18], while Meissner [17] chose the classical definition of the rules,

monotonously adding to the tree.

The differences between the two algorithms have some implications:

• The set of expressions to maintain with the classical rules is much larger than

if you discard evaluated expressions during the proof process. Your proof tree

stays significantly smaller, saving on the memory footprint of the procedure.

• The classical algorithm has to maintain guards to avoid expanding the same ex-

pression twice during the process, spending computing power on the checks.

The same expression is probably inspected multiple times before it might even-

tually get expanded, and after that it might again be inspected multiple times,

with no effect. This shows a probably high degree of term inspections without

effect, again drawing on computing time.

• The evaluated expressions do not add to the result of the proof any longer:

– Clashing. The parent term will not be relevant for clashes, since due to

the Negative Normal Form (NNF) of the initial expression, only atomic

concepts are negated, never compound terms. That is, there can never be

a situation where a complex termC will be relevant for a clash test with

another element¬C in the same node3.

– Branches/New Nodes. Only existential terms can create new nodes. Once

an existential has been evaluated, the new node exists and the existential

in the parent node is no longer needed. The same node cannot be created

twice. and-, or- and f orall -terms cannot create new nodes, andf orall -

terms can only add to existing child nodes. If it is asserted that all possible

child nodes are present at the timef orall -terms are evaluated, existentials

cannot add further.
3But this also shows the dependency of the modified rules on NNF, which depends on the previous

concept unfolding. As a consequence, optimisation techniques likelazy unfolding[19, p.9] cannot be
applied to the modified rules.

Chapter 4. Implementing Tableaux 27

– Model. An interesting question is whether deleting parent terms from a

node label can lead to an empty node label. As forand− /or-terms this

cannot happen, since they either produce new elements in the node label

or these elements were already present (at least partly), as ascertained by

the precondition. Dropping anand− /or-parent term can therefore never

render a node empty.

Removing quantified expressions after evaluation from the node might ren-

der it empty, but this can only happen after successfully creating child

nodes, which are further inspected for a model. The decision procedure

therefore continues unhindered.

• Parsimonious rules do, however, impact the constructive character of the proof,

where in case of a saturated and open tree the classical algorithm constructs a

satisfying model. Obviously, missing expressions in node labels might change

the constructed model. But since we are only interested in a decision proce-

dure, and never return the constructed model, this is no problem. The decision

procedure remains intact.

4.5 The New Rules

Table 4.1 gives the new and modified set of inference rules, theparsimonious rules,

that I am using in my implementation. To the best of my knowledge, these variants

of the Tableaux rules have not been presented in academic publications before. The

following sections discuss each of the new rules.

4.5.1 AND-Expansion

During the expansion of anand-expression, the operands get added to the node label.

Since the semantics of the node label is that individuals of the represented concept have

to satisfy all the contained concepts, i.e. every contained concepts acts as a constraint,

all elements in the set are implicitly conjuncted. That is, the set{A,B} is semantically

equivalent to the set{AuB}. Moreover, in the set{A,B,AuB} individuals must satisfy

A andB (the first two members of the set). The third constraint,AuB is re-stating this

requirement, and is therefore redundant: it does not add a semantically new constraint.

It is also not possible to render the node “empty” by removing the complexand-

term, since the child terms are necessarily present after the rule application.

Chapter 4. Implementing Tableaux 28

u− rule i f 1. (C1uC2) ∈ L(x)

2. {C1,C} 6⊆ L(x)

then L(x)−→ (L(x)\ (C1uC2))∪{C1,C2}
t− rule i f 1. (C1tC2) ∈ L(x)

2. {C1,C2}∩L(x) = /0
then a. saveT

b. tryL(x)−→ (L(x)\ (C1tC2))∪{C1}
If that leads to a clash then restoreT and

c. tryL(x)−→ (L(x)\ (C1tC2))∪{C2}
∃− rule i f 1. ∃R.C∈ L(x)

2. there is noy s.t. L(〈x,y〉) = R andC∈ L(y)

then create a new nodey and edge〈x,y〉
with L(y) = {C} andL(〈x,y〉) = R and

L(x)−→ L(x)\∃R.C

∀− rule i f 1. ∀R.C∈ L(x)

2. there is somey s.t. L(〈x,y〉) = R andC /∈ L(y)

then L(y)−→ L(y)∪{C} for every applicabley and

L(x)−→ L(x)\∀R.C

Table 4.1: Modified Tableaux Inference Rules for ALC (new parts are in blue)

4.5.2 OR-Expansion

The same basically holds true foror-expressions. The duplication of the whole tree

with one ‘or’ operand in the node label in one tree, and the other operand in the node

label of the other, preserves fully the semantics of the initial complex or-expression.

There must either be a model fullfilling the the tree with the first operand, or a model

for the tree with the second, for the initial expression to be satisfiable. The complexor-

expression does not add a new constraint to the respective node label, and can therefore

be discarded.

It is also not possible to render the node “empty”, since at least one of the operands

is necessarily present after the rule application.

4.5.3 Exists-Expansion

Again, we face the same situation with the expansion of existentials. After (possibly)

creating a new child node and a new edge to it, labelled with the name of the relation,

Chapter 4. Implementing Tableaux 29

this fully represents the initial semantics of the existential. To keep the existential

means to retain redundant information. Further expansion of the term is prohibited by

the rule’s guarding condition, so the term is effectively useless.

It is possible to render the node “empty” after a parsimonious rule application.

However, this does not damage the proof, since the relevant information for the deci-

sion procedure are in the child nodes.

Therefore, the existential can be pruned from the node label.

4.5.4 Forall-Expansion

Forall-expressions (∀R.C) can be evaluated multiple times, precisely once for each

existing child node with matching relation edge and non-existent conceptC. With a

f orall -term, all we have to make sure is that it is maximally applied, before we prune

it from the node label. This pruning is then not damaging to the proof.

Pruning f orall -expressions might render a node label empty, e.g. when the initial

node label only consisted ofexist- and f orall -terms. However, this does not damage

the proof, since the relevant information for the decision procedure is in the child

nodes.

4.5.5 Emptying the Node by Pruning Parent Expressions

As stated above, it is possible to empty a node by applying parsimonious rules (in the

existential and universal case), but this does not affect the proof result. The proof is

continued with the the child nodes of the quantifier expansions. It is also not possible

that the same term in its negated version could show up, causing a clash, since the

expressions are in unfolded NNF, i.e. only basic concepts are negated.

4.5.6 Summary

This section introduced the notion of parsimonious Tableaux rules, where the rules not

only add derivative terms to the proof tree, but also remove the parent terms. This is

possible under the assumption of an ordered and exhaustive application of the infer-

ence rules to the DL expressions of a node label. The parsimonious rules also make

some of the “guards” (preconditions) for the rules superfluous, which only protect

against the repeated application of a rule to the same expression. In each proof step,

only redundant information is removed from the node label, which is not relevant for

Chapter 4. Implementing Tableaux 30

the remainder of the proof. Therefore, soundness and completeness properties of the

classical algorithm are retained by parsimonious rules.

Termination is retained, since the set-minus operation (“\”) used in the modified

rules reduces the number of DL expression in a set. If the algorithm terminates (i.e.

no more rules are applicable) with the larger number, it will also terminate with the

reduced number of elements. Looping evaluation of the same term is prohibited, since

every evaluated term is removed.

Even if the parsimonious rules changed the semantics of nodes, which represent

individuals constructed by the proof, even if you interfered with the constructive char-

acter of the proof, it will still – if successful – construct a model that satisfies the initial

formula, and you still have a decision procedure.

4.6 Fringe vs. Whole Tree

Once you are sure that a node has been exhaustively transformed and expanded, checked

for obvious concept contradictions, and all possible child nodes have been derived with

their labels fully expanded, you can simply neglect it. It does not contribute anymore

to the result of the decision procedure. Analogous to complex DL expressions within a

node to which a derivation rule has been applied, the whole node now can be discarded.

Therefore, for any given proof tree, it suffices only to keep track of the current

set of leaf nodes, orfringe [20, p.70], in contrast to classical definitions of the proof

expansion rules, which always maintain the whole tree.

Keeping only the fringe of the proof tree provides various advantages without in-

curring negative effects:

• Less memory is needed to keep the fringe rather than the whole tree. This is

especially interesting for very large concept expressions.

• Non-leaf nodes in the tree do not add to the decision; therefore there is no need

to keep track of them.

• Looking only at fringe nodes (and therefore potential subtrees of the proof tree)

allows for heuristics on which branch a fast result (i.e. a clash) may be achieved.

(A clash closes the branch and therefore the whole tree, which then is known not

to provide a model for the proof goal).

This depends on the ordered execution of rules, as described above: restricting

yourself to maintaining only the fringe is only possible if you can make sure that a

Chapter 4. Implementing Tableaux 31

parent node has beenfully expanded, and cannot be expanded any further – both in

terms of child expansion and clash detection. Only then can you leave it behind and

concern yourself only with the child nodes.

4.7 Handling OR Trees

During the expansion of the proof tree, every time you expand at connective, you have

a non-deterministic choice: it is good enough if a tree with either of the two operands

gives you a model, in order for the proof to succeed, therefore, you can choose any of

them and try the other on failure.

This leaves room for implementation variants. In their algorithm description, Baader

and Sattler (e.g. [10, p.6]) maintain a set of alternative trees that result from union elim-

ination during the proof. Each time you encounter a union in a node, the whole proof

tree will be replaced by two variants of itself, which are identical to the original tree

with one union operand added to the first variant, and the second operand added to the

second.

An alternative way, which is closer to Horrocks’ Tableaux rule [5, p.48] and was

chosen for the presented implementation, and also by Aitken [18] and Meissner [17],

is to create a choice point, explore first the tree variant with the first union operand, and

on failure return to this choice point and try the variant with the second union operand.

This technique explores the different tree variants sequentially, in the order the union

operands have been found, until one of the variant trees provides a model. Apart from

saving runtime memory because you only have to keep a single tree in memory at any

one time, this solution is very attractive for Prolog because it naturally fits into Prolog’s

backtracking strategy.

However, keeping a set of alternative trees over the proof’s runtime also has its

beauty. Beside the fact that it is more demanding to keep all these trees in memory

simultaneously, considering that they can become quite large while having possibly a

lot of overlap, this technique gives you a distinct advantage: since you can oversee

all the trees you have encountered so far, it gives you maximum freedom in choosing

which to pursue further in the proof and allows you to consider heuristics concerning

which of the trees might lead to an answer (i.e. model) fastest, and pursue this one

first.4

4The question of possible measures for such heuristics is not explored further here, but the least
number of language tokens in leaf nodes and the least number of existentials come to mind. The aim

Chapter 4. Implementing Tableaux 32

Yet also in the sequential version, you can apply heuristics at any choice point to

choose the most promising variant first. It would suffice to measure the two union

operands, since the resulting alternative trees are identical apart from these two ex-

pressions. But the disadvantage is that you can always only decide between the current

possible two variant trees. It would be harder in this approach to take other choice

points further up the proof tree into consideration as well.

4.8 The Second Condition of the OR Rule

An interesting question concerning alternative trees is posed by the second condition

that guards application of theor-rule. This second condition effectively blocksor-

expansion if only one of the operands is already available in the node (cf. Tab. 3.1).

For example, in a tree with a single node like

{A, AtB}

theor-expression cannot be expanded, sinceA is already available. Horrocks’ [5, p.48]

basic rationale for this condition is to avoid multiple evaluations of the same complex

term. If you allowed the expansion, it would lead to two alternative trees, namely

{A}, {A, B}

Blocking theor-expansion does not harm the first tree, since it is just the old tree

without theor-expression (which is what you get with parsimonious rules as well).

But obviously the whole second tree containingB is suppressed, which might be an

arbitrary deep and complex DL expression. This raises the question of whether this

second tree could contain a model, and with the first tree failing (through a clash),

whether this would contribute to a successful proof, which you would otherwise miss.

But on closer inspection, this appears not to be possible (which increases the con-

fidence in the rule condition). If the first and simpler tree clashes, there is no way

the second can provide a model, since it contains all the constraints from the first tree

(A) and justaddsmore constraints (namelyB). If a simpler concept is not satisfiable,

a more complex one never can be. The same holds true the other way round, when

is clear: you want to pick the tree with the least branching and the least depth before it is saturated.
Branching and depth both depend on existential expansion, so the tree with the smallest fringe (number
of leaf nodes) and the fewest number of existentials in its fringe would be the most promising for a fast
saturation.

Chapter 4. Implementing Tableaux 33

B was already present. You always end up with a subsumption relation between the

alternative nodes, where the smaller set of constraints is enough to decide satisfiability.

For the proof that means that we can safely ignore alternative trees if one of the

or-operands is already present. It will not damage the decision procedure, and has the

nice computational advantage of saving us from exploring a potentially big alternative

tree.

4.9 Summary

We have discussed various aspects of the Tableaux algorithm with regard to possible

implementations, which led to design options that we will use in the proposed imple-

mentation, namely

• rule orderingandexhaustive application of ruleson nodes,

• replacing terms by their rule derivatives, which led to the re-formulation of the

classical rules asparsimonious rules, and

• keeping only thefringeof the proof tree during the proof procedure.

All these aspects show promise with regard to memory consumption and runtime of

the proof.

Chapter 5

Specification of the Implementation

This chapter presents a specification oftableaux.pl, the proposed Prolog implementa-

tion of the Tableaux algorithm. A complete listing oftableaux.plis given in Appendix

A. In the following sectionsA, B, C, . . . denote well-formed DL concept expressions.

Expressions on the left of the left-pointing arrow (←) are goals you want to satisfy,

expressions on the right of it represent subgoals that, if satisfied, allow you to derive

the main goal. Throughout this chapter, two-place predicates (likeexpanddefs/2) can

be read as taking the first argument as an input parameter and constructing the second

argument as an output parameter.

5.1 Goal Construction

The first step of the algorithm is the construction of the goal for the proof derived from

the initial query. The top-level predicatequery/1succeeds if the query is satisfiable,

and fails if it is unsatisfiable.

query(A≡ B) ←¬tableaux(Au¬B)∧¬tableaux(Bu¬A)

query(Av B) ←¬tableaux(Au¬B)

query(AuB v⊥) ←¬tableaux(AuB)

query(unsatis f iable(A)) ←¬tableaux(A)

query(A) ← tableaux(A)

The first line says, if your question is whetherA is equivalent toB, this is true if the

tableaux proof can show thatAu¬B is not satisfiable andBu¬A is not satisfiable.

Likewise, goals for the prover are constructed and combined for queries for subsump-

tion, disjointness, unsatisfiability and satisfiability. The last clause head matches all of

the other clause heads, but always fails if invoked with one of the other arguments.

34

Chapter 5. Specification of the Implementation 35

5.2 The Basic Tableaux Proof Predicate

The top-level proof goal,tableaux/1, is defined as follows:

tableaux(A)← expandde f s(A,A1)∧
nn f(A1,A2)∧
expandtree(A2)

First, all complex concepts are replaced recursively by their definition, to obtain an ex-

pression that only contains atomic concept names (expanddefs/2). From this expres-

sion, the Negative Normal Form is derived, where only atomic concepts are negated

(nnf/2). This formula is then fed into the actual proof algorithm that treats it as the

root node of a proof tree. The initial node is subsequently transformed and expanded

by well-defined proof steps (expandtree/2). During the tree expansion, its leafs are

inspected for possible clashes and the goal fails if one is found. If the tree is fully

expanded without a clash, the goal succeeds.

5.3 Concept Unfolding

Complex DL concepts in the goal, i.e. named concepts that are defined in terms of

other concepts, have to be replaced by their definitions to reach an expression that only

contains atomic concepts. Formally,

expandde f s(A,A1) ← atomic(A)∧ont(equiv(A,A2))∧expandde f s(A2,A1)

expandde f(A,A) ← atomic(A)∧¬ont(equiv(A,))

This says that every atomic concept name A, for which a definition is given in the on-

tology (through someA≡ f (Xi) equivalence expression, wheref (Xi) is a well-formed

DL formula over some conceptsXi), is replaced by this definition. Concept names

which have no defining expression in the ontology are returned as primitive. This rule

has to be applied recursively to obtain the desired result.

5.4 Negative Normal Form

These are the transformation rules to convert an arbitrary DL formula into its Negative

Normal Form:

Chapter 5. Specification of the Implementation 36

nn f(¬¬C,C)

nn f(¬∀R.C,∃R.C1) ← nn f(¬C,C1)

nn f(∀R.C,∀R.C1) ← nn f(C,C1)

nn f(¬∃R.C,∀R.C1) ← nn f(¬C,C1)

nn f(∃R.C,∃R.C1) ← nn f(C,C1)

nn f(¬(AuB),A1tB1) ← nn f(¬A,A1)∧nn f(¬B,B1)

nn f(AuB,A1uB1) ← nn f(A,A1)∧nn f(B,B1)

nn f(¬(AtB),A1uB1) ← nn f(¬A,A1)∧nn f(¬B,B1)

nn f(AtB,A1tB1) ← nn f(A,A1)∧nn f(B,B1)

nn f(¬C,¬C) ← atomic(C)

nn f(C,C) ← atomic(C)

Again, the first argument tonnf represents some initial DL formula and the second

argument its processed form, given that the subgoals on the right-hand side succeed.

The rules have to be applied recursively until only atomic concepts are negated.

5.5 Expanding the Proof Tree

The actual proof starts with the goal derived by the transformations applied so far.

This will be some kind of DL expression, with all concept names replaced by their

most basic definitions, and only atomic concepts being negated. The basic control

mechanism is a standard agenda-style tree expansion, where leaf nodes are examined,

transformed or expanded, and the resulting leaf node(s) are put back into the list of the

current fringe nodes (or agendas), for further examination.

I give here the interesting predicates that examine and transform/expand a single

node. The basic predicate,processnode/2, transforms theu andt connectives using

transformconnectives/2. The result is then examined for possible∃ and∀ quantifier

expansions, which might result in new child-nodes being created (expandnode/2).

Always only leaf nodes are kept in the fringe.

processnode(A,B)← trans f ormconnectives(A,A1) ∧
expandnode(A1,B)

The resulting list of new and/or transformed nodes is put back to the agenda list, and

the process starts over.

transformconnectives/2is the first operation on each examined node. Intersection

is resolved into the list of the two operands, union by replacing the original expression

Chapter 5. Specification of the Implementation 37

with the first or the second operand. The new list of expressions replaces the original

for further processing.

trans f ormconnectives([AuB|R],R1)← trans f ormconnectives([A,B|R],R1)

trans f ormconnectives([AtB|R],R1)← trans f ormconnectives([A|R],R1) ∨
trans f ormconnectives([B|R],R1)

expandnode/2checks for clashes in the current node, i.e. obvious contradictions

of a concept and its complement. But its core is the expansion of existential and uni-

versal quantifiers, achieved byexpandexist/3andexpanduniv/3. Both take an extra

argument as they have to keep track temporarily of child nodes.

expandnode(N,) ← checkclash(N)

expandnode(N,NL) ← expandexist(N, [],E) ∧
expanduniv(N,E,NL)

The inital list of child nodes toexpandexist is empty, and the resulting list is passed

on in E. In addition to their node label, these nodes get attributed with a relation

(which can be viewed as the named edge in the proof tree) and a unique identifier,

to distinguish different child nodes that are connected to the parent through the same

relation.

So input parameters are the current node as a list of DL expressions, and the cur-

rent list of child nodesE. expandexist/3returns the current list of child nodes, while

expandunivstrips the attributes off at the end to return a list of plain leaf nodes.

expandexist([∃R.C|L],E,EE) ← ¬member((R, ,),E)∧ id(I) ∧
expandexist(L, [(R, I , [C])|E],EE)

expandexist([∃R.C|L],E,EE) ← member((R, ,L1),E)∧¬member(C,L1) ∧
id(I)∧expandexist(L, [(R, I , [C])|E],EE)

expandexist([],E,E)

In the case of an existential expression, the expansion is continued with a new node

added to the list of child nodes, attributed with the name of the relation, provided such

an attributed node with such a concept does not already exist.

If there is no existential expression at all, the current node constitutes a final leaf

node and, since it is already checked for clashes, ascertains an open branch in the

proof tree. Otherwise, the resulting list of attributed nodes is used as an input forex-

panduniv/3, together with the current node, to expand potential universal restrictions.

Chapter 5. Specification of the Implementation 38

expanduniv([∀R.C|L],E,N) ← expanduniv exhaust((R,C),E,EE) ∧
expanduniv(L,EE,N)

expanduniv([],E,N) ← extract nodesf rom edges(E,N)

expanduniv exhaust((R,C),E,EE) ←
extract((R, I ,L1),E,E1)∧¬member(C,L1) ∧
expanduniv exhaust((R,C), [(R, I , [C|L1])|E1],EE)

expanduniv exhaust(,E,E)

In the case of a universal expression in the current node, a node with the same labelR

has to exist in the list of attributed nodes. Only then the universal can be transformed

by way of its conceptC being added to the corresponding child node.expanduniv/3

does this through a helper predicate,expanduniv exhaust/3, which applies the given

universalexhaustively to the list of child nodes. It is therefore essential that the∃
expansion takes place before the∀ expansion, since only then all possible child nodes

will be available to try the∀ expansion on, and only after that the∀ term may be

discarded for the rest of the proof.expanduniv exhaust/3usesextract/3, which is like

member, but on success also returns the list without the found member. If the concept

C is not already present, it is added to this child node, and the process recurs with the

updated child list until no more suitable members inE can be found.

5.6 Testing the Fringe

These expansion rules are applied to the nodes in the fringe until a clash is found, in

which case the proof of the current tree fails. If available, alternative trees will be

tried via backtracking to the choice points created in the resolution ofor-terms (in

transformconnectives/2).

If no clash is found, the proof stops when no more rule application is possible and

the tableaux is saturated. In this case, the tree is open and the proof succeeds.

5.7 Example

To illustrate the application of the various proof steps here is an example1. Consider

the following ontology:

1From the KMM-A lecture. In order to distinguish from the rules, I use lower-case letters here to
name relations and concepts, since these are concrete instances, not variables.

Chapter 5. Specification of the Implementation 39

c≡ ∀r.¬a u ∀r.(∃s.¬b)

d≡ ∃r.((∀s.b) t a)

and the following query:

query(cud v⊥) % (Are c and d disjoint?)

The proof goal then is to show thatcu d is unsatisfiable. The proof starts with this

expression in the single node of the initial tree (nodes delimited by [], trees by{}).
Here is how the proof evolves:

{[(∀r.¬a u ∀r.(∃s.¬b)) u ∃r.((∀s.b) t a)]} Concept unfolding (1)

{[(∀r.¬a, ∀r.(∃s.¬b)), ∃r.((∀s.b)ta)]} Elimination of connectives (2)

{[∀r.¬a,∀r.(∃s.¬b),∃r.((∀s.b) t a)], [(r,1, [((∀s.b) t a)])]} Existential expansion, creating a

temporary list of attributed nodes

(3)

{[∀r.¬a,∀r.(∃s.¬b),∃r.((∀s.b) t a)], Universal expansion (4)

[(r,1, [¬a,∃s.¬b,((∀s.b) t a)])]}
{[¬a,∃s.¬b,((∀s.b) t a)]} Continuing with the new node, at-

tributes stripped

(5)

{[¬a,∃s.¬b,∀s.b]},{[¬a,∃s.¬b,a]} Union elimination, creating two al-

ternative trees, with a single node in

each, and with an immediate clash

in the second

(6)

{[¬b,b]},{[clash]} Existential and universal expansion

in the first tree creates a new node,

again with a clash

(7)

{[clash]},{[clash]} Result: both trees are closed (8)

Here is more explanation for the proof steps:

• (1) The two concepts in the initial goal,c andd, are simply replaced by their

definitions.

• (2) The connectives are eliminated; here, this only applies to intersection.

• (3) From the resulting three elements in the list, the existential can be expanded.

This creates a new temporary list of (child-) nodes. In this case, there is only one

existential to expand, so the list consists only of one child node, attributed with

the name of the relationr and an identifier.

Chapter 5. Specification of the Implementation 40

• (4) Now the universals can be expanded, since they scope over the same relation,

r. Their concepts are added to the new attributed node(r,1,[. . .]) .

• (5) Once we did all possible quantifier expansion, the list of child nodes has

settled, and we continue the proof with these new leaf nodes. The attributes are

no longer needed (they serve only to constrain the expansion of the universals).

The parent node has been fully exploited and can be discarded.

• The third element contains a union, which can now be eliminated.

• (6) This results in two alternative trees with one node, each containing one of the

disjuncts together with the rest of the initial node contents.

• The second of these lists shows an immediate clash (¬a anda), so this tree is

closed. The node in the first tree can be further expanded.

• (7) As in steps (3) and (4), the existential∃s.¬b creates a new child node,

(s,2, [¬b]). In consequence, the universal∀s.b can be expanded, adding its con-

ceptb to the new node. Stripping the attributes and discarding the parent, we

end up with the new node[¬b,b] (alongside the already closed second tree).

• (8) The left tree yields another clash, so both closed trees are shown. The

tableaux is saturated and all trees are closed, so there is no model for the proof

goal.

That means the answer to the initial query (disjointness of c and d) is “yes”. In

the case of quantifications (over relationsr and s), expansions of the universals in

the corresponding steps were possible since existentials over the same relation were

available.

Chapter 6

Benchmarking the System

Implementing an algorithm in a specific way always demands on evaluation of its run-

time behaviour. For a Description Logics reasoner this means selecting suitable test

ontologies and queries, and comparing the results against the correct solutions and

other available systems. Choosing ontologies and queries provides some challenges of

its own. The various language levels for DLs are reflected in the various ontologies,

and there is not much sense in running anALC reasoner against an ontology that uses

e.g.SH OI N to express its concepts; the reasoner would simply not be able to cope

with the language constructs that are unknown to it. Once you have settled for suitable

ontologies and queries, it is important to know the correct outcome of the queries. On-

tologies and queries quickly become complex, so that it becomes increasingly hard to

convince yourself about their outcome “with pen and paper”. The options that remain

are either constructing test data yourself, e.g. by using an ontology editor like Protéǵe,

and then run the test data through a reference system that you trust; or re-use exist-

ing examples and test data which have documented outcomes. This work follows the

second approach1.

1One advantage of this is also that you side-step a pitfall that is inherent in any software develop-
ment. If you design the test cases for the software you have written yourself, chances are that you are
duplicating errors and blind spots in both your implementation and your data. Independent tests avoid
that. It also requires a fair amount of insight and experience to construct tests that are not trivial, and
test across different parts of the proof process.

41

Chapter 6. Benchmarking the System 42

6.1 The Test Data

6.1.1 T98-sat

The T98-sat Description Logics benchmark test is part of a larger suite of benchmark

tests that was issued in 1998, in preparation for the ’98 International Workshop on De-

scription Logics (DL’98)2. It contains a set of 2 times 9 files. Each file contains more

or less complex, TBox-freeALC concept expressions. For each of the nine pairs, one

file contains only satisfiable queries, the other only unsatisfiable ones. The task is to

check the satisfiability of the expressions. Horrocks and Patel-Schneider write in their

summary of the test: “The test consists of 9 classes of concept (e.g.k branch), in

both coherent and incoherent forms. For each class of concept, 21 examples of sup-

posedly exponentially increasing difficulty are automatically generated from a basic

pattern which incorporates features intended to make the concept’s coherence hard to

compute.” [21, p.2] As stated, within each file there are 21 queries, where the com-

plexity of each expression (i.e. its sheer length and depth of nesting) increases. For

example, the number of language tokens (i.e. number of concept names, role names

and constructors) of the first query ink branch n.alc is 133, the last query in the

same file contains 20353 tokens.

The organisation of the benchmark allows for both correctness and performance

tests. But the original intent of the benchmark was to focus on performance. The

idea was to run each query of a file and measure the time the reasoner needs to come

back with the individual answers. The number of queries in the file that could be

answered within a runtime below 100 seconds would be the “mark” of the reasoner

and its benchmark result. E.g. the result for RacerPro 1.9 on a given machine could

be 13, meaning RacerPro answered each of the first 13 queries in a time under 100

seconds.

For an overview, here is the complete list of files in the T98-sat test suite (*n.alc

contains the consistent queries, *p.alc the inconsistent):

k_branch_n.alc

k_branch_p.alc

k_d4_n.alc

k_d4_p.alc

k_dum_n.alc

2http://dl.kr.org/dl98/comparison/data.html

Chapter 6. Benchmarking the System 43

k_dum_p.alc

k_grz_n.alc

k_grz_p.alc

k_lin_n.alc

k_lin_p.alc

k_path_n.alc

k_path_p.alc

k_ph_n.alc

k_ph_p.alc

k_poly_n.alc

k_poly_p.alc

k_t4p_n.alc

k_t4p_p.alc

The tests particularly considered in this work are thek dum*.alc files. The selec-

tion is partly due to the moderate demands they put on the reasoner, partly due to the

various results that we obtained from running them, and partly due to time constraints

for this work.

The T98-sat tests were adapted from a modal logic test suite developed by Balsiger,

Heuerding and Schwendimann, a description of their work can be found in [22]3. A

complete description of the DL’98 test suite, together with pointers to relevant litera-

ture, is given in Horrocks and Patel-Schneider [21].

6.1.2 The Extended Mindswap Testsuite

The Maryland Information and Network Dynamics lab Semantic Web Agents Project,

Mindswap4, is a group within a special lab5 of the Maryland Institute for Advanced

Computer Studies6 of the University of Maryland. The group focuses on Semantic

Web research and has, among other things, developed the Description Logics reasoner

Pellet. They also host the web page of the CMSC 498W “The Semantic Web” course7

of the Computer Science department of the University of Maryland. As part of the

3This information was provided by Ian Horrocks in response to the author’s question on the Descrip-
tion Logics mailing list, https://dl.kr.org/mailman/listinfo/dl

4http://www.mindswap.org
5The MIND Lab, http://www.mindlab.umd.edu/
6http://www.umiacs.umd.edu/
7http://www.mindswap.org/2004/cmsc498w/

Chapter 6. Benchmarking the System 44

course assignments the students had to develop anALC reasoner in Python8. To pro-

vide for test cases the course maintainers collected a set of DL queries, together with

necessary TBoxes. The examples come from various sources, from the course main-

tainers, the participants, or from relevant sources on the Internet. They are compact,

they have known outcomes, and they stress various parts and potential pitfalls of the

tested reasoner. Their total number is 29.

I have added another 15 test cases, some of which are based on the common “Fam-

ily” example (used e.g. in the KMM lecture [3]). The others I have invented myself

during my work; they are mostly very short and test specific features in the proof eval-

uation.

From this total of 44 test cases, 43 were used to validate and compare the various

Prolog implementations. A complete list is given in table C.1 in Appendix C9. They

have been translated from their original Python format to Prolog-style terms. All cases

contain a prediction about the outcome of the query,sat(F), whereF is either the literal

trueor f alsedepending on whether the query is satisfiable or not. A second predicate,

query/1, holds the actual query, and then zero or more clauses of theont/1 predicate

hold the corresponding TBox. (This is in contrast to the T98-sat tests, which are all

TBox-free).

During the benchmark, each of the test files isconsultedinto the Prolog interpreter,

the query is run, using the TBox if one is given, and the outcome of the proof is

compared against the value of thesat/1predicate.

6.2 The Reference Systems

6.2.1 fact.pl

6.2.1.1 The Program

fact.pl is a Tableaux implementation in Prolog by Stuart Aitken [18]. The supported

language level isALC . Besides implementing different design decisions, it uses a

slightly different representation of concept constructors, e.g.intersectionOf(A,B)in-

stead ofand(A,B).

In order to run the test examples, I had to apply a few changes that fixed bugs or

8http://www.mindswap.org/2004/cmsc498w/pa3.shtml
9One of the Mindswap tests,ex32.pl, has been omitted from the tests, since we could not obtain a

measure for it fromfact.pl, which would ran out of memory on it;ex32.pl is the last one in the list.

Chapter 6. Benchmarking the System 45

runtime behaviour. The larger code modifications concern mainly removing unneeded

trace statements and test predicates, and slight corrections to the core predicates. I

tried to be as unintrusive as possible. Despite these changes,fact.pl still causes a

runaway recursion on one of the test cases (ex32.pl). For a complete listing of the

fact.plversion used and a detailed list of the changes applied to the original code, refer

to Appendix B.

6.2.1.2 Running the Tests

In order to run the test suite, the predicates fromfact.pl were loaded into the Prolog

interpreter. Sincefact.pl does not provide concept expansion,expanddefs/2was im-

ported fromtableaux.pl. For any given test file, the file’s content was loaded withcon-

sult/1, the goal was constructed from thequery/1predicate obtained from the file, the

goal was then expanded with any applicable TBox definitions usingexpanddefs/2and

finally the expanded goal was translated into the DL representation used byfact.pl.

With the translated expression,fact.pl’s top-level predicatestar/1 was called and its

performance was measured.

To see the driver scripts that were used to glue all the various Prolog modules

together, invoke the proof predicates and measure their execution, see Appendix F.

The DCG rules to translate the ontology representation are given in Appendix E.

6.2.2 lpdl.pl

6.2.2.1 The Program

lpdl.pl [17] is also a Tableaux implementation in Prolog, and was developed by Adam

Meissner of the Poznan University of Technology in Poland. It is largely based on

his 2004 paper “An automated deduction system for description logic with ALCN lan-

guage” [16]. The implementation tries to be close to the classical definition of the

Tableaux algorithm (as given in Tab. 3.1) and emphasises algorithmic clarity over op-

timisation. The supported language level isALCN , which isALC with unqualified

cardinality constraints.

The program was originally developed in SICStus Prolog. In order to run it in

SWI Prolog, a module prefix “kb:” on some of the predicates had to be removed.

This does not change the program logic, just relaxes the (well considered) scoping of

predicate names introduced into the name space. The file I/O and ontology managing

Chapter 6. Benchmarking the System 46

predicates of this implementation (which were affected by the module prefix) were not

used anyway, since the prover was invoked only with already eliminated TBoxes.

6.2.2.2 Running the Tests

Analogous tofact.pl, thelpdl.pl predicates were loaded together with other predicates

into the Prolog interpreter in order to prepare and run the tests.lpdl.pl does provide for

concept expansion. But the translation to its own DL format made it necessary that,

after loading the test case, construction of the goal and concept expansion (again by

expanddefs/2) had to be done first. Then the language translation could take place,

andlpdl.pl’s top-level proof goalth/1was called. This call was measured.

6.2.3 RacerPro

6.2.3.1 The Program

RacerPro10 [12] is a commercial DL reasoner developed by Racer Systems11. The

version deployed for the tests was 1.9. The system is available for Microsoft Win-

dows, Linux and other Unix operating systems, such as Sun Solaris, both in 32- and

64-bit versions. It has been written in Lisp and optimised for speed and performance.

The supported DL language level isALCQ H IR + (akaSH I Q). This is ALC en-

hanced with qualified cardinality constraints, role hierarchies, inverse roles, and tran-

sitive roles. Moreover, RacerPro supports different ontology formats (such as OWL),

interfaces (such as DIG) and built-in functions (such as KRSS [23]).

6.2.3.2 Running the Tests

RacerPro supports various interfaces, but to be better comparable with the other pro-

grams the command line interface has been used for the test runs. The T98-sat tests

are already in a format that RacerPro understands so that the general command for the

program was simply

RacerPro -f [input-file]

Timing measures have been taken using the Unix commandtime(1) . From time ’s

three measurements,real, userandsys, theuservalue was chosen, since it represents

10http://www.racer-systems.com/products/racerpro/index.phtml
11Racer Systems GmbH & Co. KG, http://www.racer-systems.com/index.phtml

Chapter 6. Benchmarking the System 47

the time spent in the code of the program12.

A similar scheme was devised in this case fortableaux.pl, so that the Prolog inter-

preter was started anew for every input file and timed, to have a comparable setup. The

invocation looked like

pl -s regt98.pl -g ’getfiles(F).’ -t halt.13

whereF was either the literalsatisfiableor unsatisfiable, depending on the series to

be run. The input data was converted from the Lisp-like format on the fly and put

into a specific file before the Prolog invocation, where the driver predicate expected it

(therefore no input file name appears on the command line).

6.3 Platform

All tests were run on a Intel Pentium 4 2.6GHz chip with 512MB RAM running on a

Linux kernel 2.6.17.

Although the various Prolog programs would run with little or no change on the

SICStus platform14, SWI Prolog15 was chosen for the tests, since it provides an ex-

cellent runtime environment, especially where the profiler is concerned. All profiling

data has been gathered with SWI using itstime/1predicate, and analyses were greatly

supported by itsprofile/1predicate that collects runtime information for each predicate

used during the proof.

6.4 Results

6.4.1 Running the Extended MindSwap Tests

The results of running the various Prolog implementations of Tableaux against the test

cases of the extended Mindswap test suite are shown in Fig. 6.1. The x-axis simply

uses the numbers from table C.1 to identify the test cases. Appendix C gives their

details.
12sysdenotes the time spent in kernel code, as triggered by calls to kernel functions from the program

code. real gives the actual runtime of the program, which includes times in I/O wait state, and is
therefore usually bigger than the sum of the other two.

13pl is the executable of SWI Prolog.
14http://www.sics.se/isl/sicstuswww/site/index.html
15http://www.swi-prolog.org

Chapter 6. Benchmarking the System 48

0 5 10 15 20 25 30 35 40 45
1

2

3

4

5

6

7

In
fe

re
nc

es
 (

lo
g 10

)

Ext. MindSwap Tests

Prolog Inferences per Test

fact.pl
tableaux.pl
lpdl.pl

Figure 6.1: Comparison of Prolog Implementations (in number of inferences)

The evaluation metric chosen for the tests is the number of logical inferences made

to come to a decision. Since the implementations performed in under 0.1 seconds

on many of test examples, a comparison on the basis of CPU time would be of little

expressiveness unless you used high-resolution timing. So rather than compare mere

timing and CPU percentages used, the comparison is given in logical inferences made.

This gives a better picture of how the various Prolog implementations fare. Due to a

high variance, the values are put on an logarithmic scale, so the y-axis shows thelog10

logarithm of the number of inferences made. The exact figures are given in Tab. 6.1.

fact.plshows the greatest variance in results, both performing worst in many cases

(e.g. 6, 14, 18, 26, 31, 34, 42), as well as coming out best in others (e.g.. 4, 7, 9, 16,

21, 24, 37). It holds both the record for best overall performance (37), as well as worst

(14).

As an example, the exceptional high value of 5,007,280 inferences in test case 14

(ex19.pl) is mainly due tofact.pl’s use of themember/2built-in predicate (in which it

spends around 67% of its runtime). Rather than using it mainly as a mere test applied

to instantiated arguments, it relies heavily on the generative use of the predicate to

iterate through lists, instantiating the first argument to a member and backtracking to

Chapter 6. Benchmarking the System 49

this choice point, if further analysis of the member renders it unsuitable for the main

goal. tableaux.plandlpdl.pl both usemember/2more in its test role with instantiated

arguments,lpdl.pl even resorting tomemberchk/2in its place, to avoid choice points16.

ex19.pl is one of the “Dragon” test cases the Mindswap course maintainers found

on the Internet. Its TBox features various defining expressions for types of dragons,

and the query asks “whether something can be a Hydra and a Dragonet and a fire

elemental”17. The query is satisfiable and the unknown test author continues to state

that “it hits all of the basic constructs and rules, and should test useful features of the

reasoner by having some or-branches that clash and some that don’t, for example”

(ibid.).

The generative use ofmember/2in fact.plallows for a beautiful declarative style in

theelim/3predicate, stating the outcome of a clause application in the head (2nd/3rd ar-

gument) with initially completely unbound variables. These get bound successively in

the body of each clause, where a first general call tomember/2simply iterates through

the nodes of the tree. A subsequent call tomember/2then tries to pick a suitable ex-

pression from the selected node member list. In terms of theALC rules, this call

represents the first precondition of a rule. All these calls allow for backtracking.

Probably further member tests check the second rule condition. Only then the rule

action is applied, by changing and re-constructing appropriate lists, eventually binding

all variables in the clause head. Presumably, this use ofmember/2causes the high

number of inferences in some of the other test cases too.

Test case 37 (x ex ai.pl), wherefact.pl shows the overall best performance, is a

very simple, unsatisfiable, TBox-free query that contains a single clash:au¬a. It is

probably the simplest possible unsatisfiable query you can think of.fact.pl benefits

mainly from the fact that it does not even try a concept expansion. The ordering of its

elim/3clauses, early success of themember/2invocations and an early check for a clash

add to the good performance.tableaux.plspends alone around 25 inferences in the

(unnecessary) attempt to expand the concepts in the query with ontology definitions.

More inferences are then spent in housekeeping functions like maintaining a fringe,

which all adds up to the nearly four-fold greater number of inferences (80).

Looking at the shape of their curves,tableaux.plandlpdl.pl perform in remarkable

unison, withtableaux.plbeing more efficient by a factor of roughly two in many of

the test cases (e.g. 1, 2, 8, 14, 16, 20, 27, 34), a few cases where the two perform very

16This would be a good optimisation option fortableaux.plas well.
17From theex19.pysource code

Chapter 6. Benchmarking the System 50

0 5 10 15 20 25
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

T98−sat: k_dum_n.alc

us
er

(s
ec

s)

User Seconds per Test

tableaux.pl
RacerPro

Figure 6.2: Comparing RacerPro and tableaux.pl on k dum n.alc

closely (e.g. 3, 6, 9, 29, 30), and some wherelpdl.pl performs the better (e.g. 4, 7, 23,

25). Test case 23 (ex31.pl) deserves special attention, because the difference between

the two is especially high, to the favour oflpdl.pl (tableaux.pl: 8,798; lpdl.pl: 2,912

inferences). It turns out that this is partly due to a profuse (and entirely unnecessary)

use of Prolog’s unification operator ‘=’ in the fourth clause of thetransformconnect/3

predicate oftableaux.pl18.

6.4.2 Running T98-sat:k dum n.alc

The results of runningk dum n.alc with RacerPro andtableaux.plare shown in Fig.

6.2. In this case,tableaux.plcompares fairly well against the reference system. But this

is far from representative, and other tests from theT98-sat suite easily puttableaux.pl

outside of measuring limits (many hours). As an example, Fig. 6.3 shows the perfor-

mance of the two systems againstk dum p.alc (Note that the scale of the values is

logarithmic again). RacerPro is again nearly constant in its performance over the 21

test queries, as in the n series.tableaux.pl, while doing comparably well in the very

first test, quickly soars to the times of about 15 to 20 minutes within the first six cases.

18By omitting ‘=’ and constructing the result list directly in the head of the clause the number of
inferences drops down to 5,258 fortableaux.plin this test case.

Chapter 6. Benchmarking the System 51

0 5 10 15 20 25
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

T98−sat: k_dum_p.alc

us
er

(lo
g 10

(s
ec

s)
)

User Seconds per Test

tableaux.pl
RacerPro

Figure 6.3: Comparing RacerPro and tableaux.pl on k dum p.alc

Extended Mindswap Tests

No. fact.pl tableaux.pl lpdl.pl

1 2567 183 345

2 744 442 808

3 822 2005 1942

4 100 199 162

5 1995 204 339

6 9834 7337 7400

7 142 269 210

8 4710 353 672

9 166 288 264

10 378 492 740

11 247 290 525

12 1259 1072 5039

13 2975 153 348

14 5007280 1948 4177

15 2213 10674 13529

16 145 212 458

Chapter 6. Benchmarking the System 52

Extended Mindswap Tests

No. fact.pl tableaux.pl lpdl.pl

17 2079 2470 4025

18 46334 395 929

19 1412 1503 2631

20 3927 349 757

21 219 306 387

22 2567 184 345

23 1765 8798 2912

24 81 142 167

25 135 957 397

26 31719 269 668

27 3055 256 524

28 1107 122 220

29 353 517 495

30 121 199 212

31 26136 357 571

32 165 278 321

33 384 463 728

34 26067 534 1129

35 578 584 1629

36 81 88 96

37 23 80 71

38 83 74 82

39 269 128 203

40 335 129 204

41 112 135 81

42 914 242 268

43 186 326 354

Table 6.1: Number of Inferences of Prolog Implementations

Chapter 6. Benchmarking the System 53

k dumn.alc k dum p.alc

No. RacerPro tableaux.pl RacerPro tableaux.pl

1 0.164 0.028 0.168 0.072

2 0.152 0.02 0.136 2.116

3 0.164 0.028 0.156 2.208

4 0.164 0.024 0.16 797.49

5 0.156 0.024 0.16 1018.864

6 0.152 0.024 0.16 1076.867

7 0.164 0.028 0.18

8 0.168 0.024 0.168

9 0.18 0.032 0.16

10 0.16 0.032 0.152

11 0.168 0.044 0.18

12 0.176 0.052 0.172

13 0.18 0.068 0.18

14 0.172 0.076 0.18

15 0.172 0.092 0.18

16 0.172 0.1 0.164

17 0.204 0.128 0.168

18 0.192 0.124 0.184

19 0.196 0.164 0.176

20 0.208 0.176 0.184

21 0.204 0.212 0.204

Table 6.2: Runtime Performance of RacerPro and tableaux.pl

6.5 Evaluation

Using Tableaux reasoning for Description Logics as implemented intableaux.plshows

promise. Compared to other Prolog implementations, it fares very well, coming out

fastest on average in the extended Mindswap test suite. Using ordered and exhaustive

rule application on nodes, parsimonious rules and maintaining a fringe rather than the

whole proof tree seem to offer a sound and efficient way of implementing Tableaux.

Moreover, the initial implementationtableaux.plstill leaves room for obvious optimi-

sations, like the elimination of ‘=’ intransformconnect/3.

The comparison with a commercial and industrial-strength DL reasoner shows that

Chapter 6. Benchmarking the System 54

at least for certain problems, reasoning in Prolog can compete in speed, and even

outperform the commercial product. The interesting issue here would be to explore

the boundaries of this behaviour, and to analyse the characteristics – both of the test

cases and the implementation / Prolog – that lead to it.

Chapter 7

Conclusions

The goal of this work was to re-construct a Tableaux reasoner for Description Logics

in Prolog. The discussion of the classical Tableaux proof rules, as proposed e.g. by

Horrocks [5] and Baader and Sattler [10] showed that there is a certain degree of non-

determinism in the algorithm and generality in the proof rules that leave room for

implementation decisions.

Taking existing ideas and implementations into account, we proposed three strate-

gies how to concretise the general algorithm:

• Orderedandexhaustiveapplication of rules on a give node of the proof tree.

This approach was already suggested by Baader and Sattler (e.g. [10]).

• The use ofparsimoniousrules which delete compound expressions from the

proof tree after they have been evaluated.

• Keeping afringeof current leaf nodes, rather the whole tree, during a proof.

The latter two strategies depend on the first. You cannot delete compound expressions

if you cannot be sure that by some future rule application this expression might gain

relevance again; ordered and exhaustive application ensures this. And only by exhaus-

tive node expansion can a node be discarded from the remainder of the proof.

These strategies have been put to work in a Prolog implementation,tableaux.pl.

Comparisons with other Prolog implementations and even a commercial DL reasoner

showed good results; and although an interpreted Prolog implementation might not

challenge other optimised implementations on a general performance level, the declar-

ative nature of the language makes it an interesting choice for rule-based proof systems

like Tableaux. It facilitates extensions to the basic algorithm and the exploration of de-

55

Chapter 7. Conclusions 56

sign alternatives. Combining and mixing the code of various implementations is easy,

as the various tests showed.

Last but not least, a DL reasoner in Prolog provides opportunities for various kinds

of users. As a Prolog module it makes it easy for other Prolog developers to take ad-

vantage of this facility in their own code, e.g. for the development of Semantic Web

agents. Ontology developers can quickly check their ontologies and debug inconsisten-

cies. Researchers can study and modify the source code to provide specialised services.

It shows that DL reasoning, and therefore a corner stone of the Semantic Web, does

not have to be an inaccessible terrain of heavyweight software. It can be lightweight.

7.1 Future Work

The presented work leaves room for a lot of extensions along various dimensions.

7.1.1 DL Language Extensions

The presented implementation only covers the most basic DL,ALC . A natural and

desirable way to extend it would be to support a more powerful language, the next

step in the hierarchy beingALCN . ALCN extends the basic language with number

(cardinality) restrictions in their unqualified form (≥ 3hasChildren). Qualified number

restrictions would give youALCQ (≥ 3hasChildren.Person). ALCN is the language

implemented by Meissner [16].

7.1.2 Integration with Rules

Initiatives are under way to add rules to ontologies, particularly in the context of the Se-

mantic Web. These are among others the Rule Markup Language initiative, RuleML1

, the W3C’s Rule Interchange Format, RIF2, and REWERSE3, a European initiative

that concerns itself with reasoning languages for the Web in general. Adding a “rule-

box” to their definition means that ontologies enter a whole new area of expressiveness.

Reasoning in Prolog over ontologies should make it easy to incorporate rules that come

with them. A good starting point might be [25].

1http://www.ruleml.org/; Boley [24] especially discusses the relation to Prolog and XML.
2http://www.w3.org/2005/rules/
3http://rewerse.net/

Chapter 7. Conclusions 57

7.1.3 Restricted Natural Language Interface

It should be straight-forward to define a controlled vocabulary to define and query

ontologies. A corresponding interface to the reasoner could then be built, making the

system more accessible for humans and less dependent on a formal syntax.

A fish is a kind of animal.{ f ishv animal}
A brother is a sibling that is male.{brother≡ siblingumale}

Every mother has a child.{motherv ∃hasChild}
Koalas only eat eucalyptus leaves.{koalav ∀eat.eucalyptusLea f}

It could be easily translated into a variety of technical representations, like OWL, Pro-

log terms or Lisp terms4.

7.1.4 Ontology Representations

The system could be enriched with more parsers for various ontology representations

and formats. This would allow a greater variety of ontologies to be read in and rea-

soned with. Most prominently, a parser for OWL would allow the system to work on

ontologies represented in OWL, as can be found on the Internet and produced by on-

tology editors such as Protéǵe. Prolog packages for parsing XML exist for example

for SICStus (PiLLoW5) and SWI (SemWeb6), which also includes support for RDF.

7.1.5 Proof Explanation

A satisfiability reasoner is fed with an ontology and a query, and comes back with an

answer, yes or no (meaning the query is satisfiable or not). Given the possible com-

plexity of the ontology and the transformation steps necessary to derive a conclusion a

result might be not at all obvious. Proof explanations that expose the crucial steps of

the transformation could be deployed to e.g., convince the user or help in debugging

the ontology. A possible starting point might be [26].

4See for example the work done in the “Attempto Controlled English” project,
http://www.ifi.unizh.ch/attempto/, where translation from and into OWL DL is achieved.

5http://www.sics.se/sicstus/docs/3.12.5/html/sicstus/PiLLoW.html
6http://www.swi-prolog.org/packages/semweb.html

Chapter 7. Conclusions 58

7.1.6 Optimisations

There is extensive literature about optimising Tableaux, starting with Ian Horrocks’

PhD thesis [5]. Optimisation techniques that might be beneficial for even the basic

ALC includecaching[5, p.91], lazy unfolding[19, p.9][5, p.79] anddependency di-

rected backtracking[19, p.9][5, p.89].

7.1.7 XSB Prolog

The implementation might benefit from an alternative Prolog system, such as XSB7

[27] , to gain optimisation effects via caching using tabled resolution. This might be

especially effective in proofs that contain equal sub-expressions in different parts of

the proof tree, especially in connection with lazy unfolding.

7.1.8 Concurrent Implementation

The Tableaux algorithm lends itself well to concurrency. Branches in the proof tree and

alternative trees that stem from union elimination could be pursued by independent

reasoner threads. In conjunction with distributing the threads to multiple processors

this could lead to a significant speed-up in reasoning throughput. Points to start from

might be [28] and [29].

7.1.9 DIG Interface

The Description Logic Implementation Group (DIG)8 has defined a network-based

protocol to interact with a DL reasoner9 [30]. DIG is a quasi-standard DL reasoner

interface that is built on HTTP and XML. This allows arbitrary clients, e.g. ontology

editors, to check their ontologies and run queries against them. The DIG interface is

implementation-independent and therefore allows cross-reasoner interaction. DIG is

supported on the reasoner side by FaCT and Racer, and on the client side by Protéǵe

and OilEd.

For tableaux.plthe implementation could be done in a separate module that handles

the communication protocol and formats, and interfaces to the reasoning predicates. In

that sense, the DIG interface would be a first application using the reasoner library.

7http://xsb.sourceforge.net/
8http://dl.kr.org/dig/
9http://dig.sourceforge.net/

Chapter 7. Conclusions 59

Zhisheng Huang from the Free University of Amsterdam has put together a promising

framework called XDIG10 [31]. XDIG is implemented in Prolog and is basically a

network-based DIG proxy that sits between the DIG client and a backend DIG server

like Pellet. Huang developed XDIG to intercept DIG requests and add additional func-

tionality to the reasoning protocol, thereby extending DIG (hence the “X” in XDIG).

But his framework leaves enough opportunity to integrate a complete DL reasoner

and omit the backend server altogether. It comes with a well-documented API, so

the reasoner library need not concern itself with the details of the network protocol,

packing/unpacking XML etc.

10http://wasp.cs.vu.nl/sekt/dig/

Appendix A

Prolog Code: tableaux.pl

This is the code fortableaux.pl, the Tableaux reasoner that was developed for this

dissertation.

% tableaux.pl -- tableaux reasoner for description logics
:- use_module(library(lists)).
:- op(100,fy,˜).
:- dynamic ont/1.
:- dynamic id/1.

% Main Proof Goal
tableaux_proof(Exp) :- % true/fals = satisfiable/unsatisfiable

proof(Exp).

%construct_goal
proof(equiv(A,B)) :-

\+ tabl(and(A,˜B)),
\+ tabl(and(B,˜A)).

proof(subsum(A,B)) :-
\+ tabl(and(A,˜B)).

proof(disjoint(A,B)) :-
\+ tabl(and(A,B)).

proof(unsat(A)) :- % unsatisfiable A
\+ tabl(A).

proof(A) :- % try to satisfy everything else
tabl(A).

% main worker
tabl(Exp) :-

expand_defs(Exp,Exp1), % expand expression into most basic
negnormform(Exp1,Exp2), % NNF transformation
setID(0),
!,
search([[Exp2]],df,_). % do the proof as an agenda search

60

Appendix A. Prolog Code: tableaux.pl 61

negnormform(˜ ˜X,X1) :-
negnormform(X,X1).

negnormform(˜forall(R,C),exist(R,C1)) :-
negnormform(˜C,C1).

negnormform(forall(R,C),forall(R,C1)) :-
negnormform(C,C1).

negnormform(˜exist(R,C),forall(R,C1)) :-
negnormform(˜C,C1).

negnormform(exist(R,C),exist(R,C1)) :-
negnormform(C,C1).

negnormform(˜and(A,B),or(A1,B1)) :-
negnormform(˜A,A1),
negnormform(˜B,B1).

negnormform(and(A,B),and(A1,B1)) :-
negnormform(A,A1),
negnormform(B,B1).

negnormform(˜or(A,B),and(A1,B1)) :-
negnormform(˜A,A1),
negnormform(˜B,B1).

negnormform(or(A,B),or(A1,B1)) :-
negnormform(A,A1),
negnormform(B,B1).

negnormform(˜X,˜X) :-
atom(X).

negnormform(X,X) :-
atom(X).

expand_defs(forall(R,C),forall(R,C1)) :-
expand_defs(C,C1).

expand_defs(exist(R,C),exist(R,C1)) :-
expand_defs(C,C1).

expand_defs(and(A,B),and(A1,B1)) :-
expand_defs(A,A1),
expand_defs(B,B1).

expand_defs(or(A,B),or(A1,B1)) :-
expand_defs(A,A1),
expand_defs(B,B1).

expand_defs(˜A,˜A1) :-
expand_defs(A,A1).

expand_defs(X,Y) :-
atom(X),
ont(equiv(X,X1)),
expand_defs(X1,Y).

expand_defs(X,X) :-
atom(X),
\+ ont(equiv(X,_)).

% search(+Goal,+Style,-ResultList) -- agenda style search
% -- transforms Goal into a list of [clash]/[model] elements

Appendix A. Prolog Code: tableaux.pl 62

search([],_,[]).
search(Reduced, _, Reduced) :-

Reduced = [H|_],
H = [clash], % a clash leaf fails the proof
!,
fail.

search([Node| T], Style, Reduced) :-
process_node(Node,NewNodes),
filter_nodes(NewNodes,NewNodes1),
merge_agendas(NewNodes1, T, Style, New),
search(New, Style, Reduced).

filter_nodes(NewNodes,NewNodes1) :-
(setof(X,(member(X,NewNodes),X\=[model]),NewNodes1);

NewNodes1 = []),
!.

merge_agendas(A1, A2, df, New) :-
append(A1, A2, New),!.

merge_agendas(A1, A2, bf, New) :-
append(A2, A1, New),!.

% reduce a node of the proof tree
process_node([clash],[]) :- !.
process_node([model],[]) :- !.
process_node(ListOfDLExps,ResultListOfLists) :-

transform_connect(ListOfDLExps,_,LoL3),
expand_nodes(LoL3,ResultListOfLists).

expand_nodes([],[]).
expand_nodes([H|R],RLoL) :-

expand_node(H,RLoL1),
expand_nodes(R,RLoL2),
append(RLoL1,RLoL2,RLoL).

% process a single node
expand_node([],[]).
expand_node([model],[[model]]) :-!.
expand_node([clash],[[clash]]) :-!.
expand_node(Node,[N1]) :-

check_clash(Node,N1),!. % clash closes this branch
expand_node(Node,N1) :-

expand_exist(Node,[],LoE), % expand existential restrictions
LoE \= [], % only continue with non-empty edges
expand_forall(Node,LoE,LoE2), % try eliminate value restrictions
extract_nodes(LoE2,N1). % get the list of new fringe nodes

expand_node(Node,[N1]) :- % model closes this branch
expand_exist(Node,[],LoE),
LoE = [],

Appendix A. Prolog Code: tableaux.pl 63

N1 = [model].

% extract list of nodes from list of edges
extract_nodes([],[]).
extract_nodes([edge(_,_,N)|R],[N|R1]) :-

extract_nodes(R,R1).

% transform and/or connectives
transform_connect([],_,[[]]).
transform_connect([and(A,B)|R],N,R1) :-

(member(A,R) ->
(member(B,R) ->

transform_connect(R,N,R1);
transform_connect([B|R],N,R1));

(member(B,R) ->
transform_connect([A|R],N,R1);
transform_connect([A,B|R],N,R1))).

transform_connect([or(A,B)|R],N,LoL) :-
(\+ (member(A,R) ; member(B,R)) ->

(transform_connect([A|R],N,LoL);
transform_connect([B|R],N,LoL));

transform_connect(R,N,LoL)).
transform_connect([H|R],N,LoL) :-

H \= and(_,_),
H \= or(_,_),
transform_connect(R,N,LL1),
LL1 = [LL2],
LoL = [[H|LL2]].

% transform forall/exist quantifiers
expand_exist([],L,L).
expand_exist([exist(R,C)|T],T1,L) :-

((member(edge(R,_,X),T1), member(C,X)) -> % existing R edge
expand_exist(T,T1,L);
getID(Id),
expand_exist(T,[edge(R,Id,[C])|T1],L)

).
expand_exist([H|T],T1,L) :-

H \= exist(_,_),
expand_exist(T,T1,L).

expand_forall(_,[],[]).
% push concept into exist. node
expand_forall(Node,[edge(R,I,N)|RoE],[edge(R,I,N2)|R1]) :-

setof(X,member(forall(R,X), Node),C1),
append(C1,N,N1),
remove_duplicates(N1,N2),
expand_forall(Node,RoE,R1).

expand_forall(Node,[edge(R,I,N)|RoE],[edge(R,I,N)|LoE]) :-

Appendix A. Prolog Code: tableaux.pl 64

\+ member(forall(R,_),Node),
expand_forall(Node,RoE,LoE).

check_clash(Exp,Exp1) :-
member(A,Exp),
member(˜A,Exp),
Exp1 = [clash].

remove_duplicates([],[]).
remove_duplicates([H|T],[H|R]) :-

r_d(H,T,[],R1),
remove_duplicates(R1,R),!.

r_d(_,[],T,T).
r_d(E,[E|T],TT,T1) :- r_d(E,T,TT,T1).
r_d(E,[X|T],TT,T1) :- X \= E, r_d(E,T,[X|TT],T1).

getID(I):-
id(I1),
I is I1 + 1,
retract(id(I1)),
asserta(id(I)),!.

getID(I):-
\+ id(_),
I is 0,
asserta(id(I)),!.

setID(X):-
(id(Y) ->

retract(id(Y));
true

),
asserta(id(X)).

Appendix B

Prolog Code: fact.pl

This is thefact.pl implementation of Tableaux in Prolog. It is a modified version of

Stuart Aitken’sfact.plcode [18].

% the FaCT algorithm for ALC
% - by Stuart Aitkens
% - some changes by Thomas Herchenroeder

:- dynamic count/1.
:- assert(count(1)).

inc(I):- count(I),retractall(count(_)),J is I + 1, assertz(count(J)).

star(G1) :- nnf(G1,G), start(G).

start(G):-
elim([[a0,[G]]],R,S),
!,rep_elim([[a0,[G]]],R),
!,rep_elim([[a0,[G]]],S).

rep_elim(_,[]):-!.
rep_elim(_,R):- closed(R),!.
rep_elim(R,R):-!,fail.
rep_elim(_,R):-

%write(’Solving: ’),
%write(R),nl,
elim(R,S,T),
!,rep_elim(R,S),
!,rep_elim(R,T).

rep_elim(_,R):-!,fail.

closed(T):-

65

Appendix B. Prolog Code: fact.pl 66

member([_,L],T),
member(complementOf(A),L),
member(A,L),!.

elim([],[],[]).
% inters elim
elim(T,[[N,[A,B|LL]]|U],[]):-

member([N,L],T),
member(intersectionOf(A,B),L),
\+ (member(A,L), member(B,L)),
delete(T,[N,L],U),
delete(L,intersectionOf(A,B),LL).

% union elim
elim(T,[[N,[A|LL]]|U],[[N,[B|LL]]|U]):-

member([N,L],T),
member(unionOf(A,B),L),
\+ (member(A,L); member(B,L)),
delete(T,[N,L],U),
delete(L,unionOf(A,B),LL).

% exists elim
elim(T,[[s(R,N,I),[A]],[N,LL]|U],[]):-

member([N,L],T),
member(exists(R,A),L),
delete(T,[N,L],U),
delete(L,exists(R,A),LL),
inc(I).

% forall elim
elim(T,[[s(R,N,I),[A|M]]|V],[]):-

member([N,L],T),
member(forall(R,A),L),
member([s(R,N,I),M],T),
not(member(A,M)),
delete(T,[s(R,N,I),M],V).

nnf(forall(R,B),forall(R,NB)):-
nnf(B,NB).

nnf(exists(R,B),exists(R,NB)):-
nnf(B,NB).

nnf(unionOf(A,B),unionOf(NA,NB)):-
nnf(A,NA),nnf(B,NB).

nnf(intersectionOf(A,B),intersectionOf(NA,NB)):-
nnf(A,NA),nnf(B,NB).

Appendix B. Prolog Code: fact.pl 67

nnf(complementOf(A),NA):-
neg_nnf(A,NA).

nnf(A,A).

neg_nnf(forall(R,B),exists(R,NB)):-
neg_nnf(B,NB).

neg_nnf(exists(R,B),forall(R,NB)):-
neg_nnf(B,NB).

neg_nnf(unionOf(A,B),intersectionOf(NA,NB)):-
neg_nnf(A,NA),neg_nnf(B,NB).

neg_nnf(intersectionOf(A,B),unionOf(NA,NB)):-
neg_nnf(A,NA),neg_nnf(B,NB).

neg_nnf(complementOf(A),NA):-
nnf(A,NA).

neg_nnf(A,complementOf(A)).

B.1 List of Changes

This is a list of changes applied to the original code, in order to prepare the program

for the tests:

• count/1. Add a “:- dynamic count/1” declaration.

• inc/1. Replaced the call toretract(count(I))with retractall(count()), since it

caused multiple instances being left in the database and individuals getting the

same number.

• write/1. Deleted a couple ofwrite/1 statements in various clauses that provided

trace output, which was not necessary for the benchmarking and would only

slow down performance.

• star/1. Added a top-level predicatestar/1 to invoke the NNF transformation

before invoking the core reasoning predicatestart/1.

• rep elim/2. Re-ordered the cuts in the fourth clause ofrep elim/2, so they would

appearbeforethe recursive calls.

Appendix B. Prolog Code: fact.pl 68

• elim/3. Add the standard Tableaux member checks for existing operands in the

clauses for intersection elimination (\+ (member(A,L), member(B,L))) and union

elimination (\+ (member(A,L); member(B,L))), to avoid looping (in connection

with forall elimination).

Appendix C

Extended Mindswap Tests

Here is an overview of the extended Mindswap test suite used to benchmark the various

Prolog implementations. Following that, the actual contents of the test files is given.

C.1 Table of Tests

All file names matchin the patternex*.pl are based on the corresponding files from the

Mindswap Semantic Web course1. The other test cases, matchingx ex *.pl , are from

the KMM lecture or self-constructed.

No. File Name Satisfiable

1 ex1 10.pl y

2 ex1 11.pl n

3 ex1 1.pl n

4 ex1 2 1.pl n

5 ex1 2 2.pl y

6 ex1 2 3.pl n

7 ex1 2 4.pl n

8 ex1 3.pl y

9 ex1 4.pl n

10 ex1 5.pl n

11 ex1 6.pl n

12 ex1 7.pl n

1http://www.mindswap.org/2004/cmsc498w/. The original files have the same names with a “.py”
extension.

69

Appendix C. Extended Mindswap Tests 70

No. File Name Satisfiable

13 ex1 8.pl y

14 ex1 9.pl y

15 ex2 1.pl n

16 ex2 2.pl n

17 ex2 3.pl n

18 ex2 4.pl y

19 ex2 5.pl n

20 ex2 7.pl y

21 ex2 8.pl n

22 ex2 9.pl y

23 ex3 1.pl n

24 ex3 3.pl n

25 ex3 4.pl n

26 ex3 5.pl y

27 ex3 7.pl y

28 ex3 9.pl y

29 x ex aa.pl y

30 x ex ab.pl y

31 x ex ac.pl n

32 x ex ad.pl y

33 x ex ae.pl y

34 x ex af.pl n

35 x ex ag.pl y

36 x ex ah.pl y

37 x ex ai.pl n

38 x ex aj.pl y

39 x ex ak.pl y

40 x ex al.pl y

41 x ex am.pl y

42 x ex an.pl y

43 x ex ao.pl n

44 ex3 2.pl y

Appendix C. Extended Mindswap Tests 71

No. File Name Satisfiable

Table C.1: The Extended Mindswap Test Suite

C.2 Contents of Tests

This is the contents of the test files containing the respective Prolog terms, including a

file calledx onto.pl, the family ontology which is shared among several of thex ex *.pl

files. For each section the file name precedes its contents.

ex1_10.pl:
sat(true).
query(and(veggiepizza, meatpizza)).
ont(equiv(veggiepizza,and(pizza, forall(hastopping, (˜meat))))).
ont(equiv(meatpizza,and(pizza, forall(hastopping, (˜veggie))))).
ont(equiv(veggie,or(mushroom, olive))).
ont(equiv(meat,or(pepperoni, sausage))).

ex1_11.pl:
sat(false).
query(and(exist(p, a), and(exist(p, b), and(and(c, d), (˜exist(p, (˜and(
(˜e), f)))))))).
ont(equiv(a,and(h, and(i, (˜d))))).
ont(equiv(j,(˜k))).
ont(equiv(b,(˜g))).
ont(equiv(d,forall(q, j))).
ont(equiv(g,(˜e))).

ex1_1.pl:
sat(false).
query(and(wine, beer)).
ont(equiv(beer,and(drink,and(exist(hasingr, water),and(exist(hasingr,
hops),and(exist(hasingr, malt), forall(hasingr, or(water, or(hops,
malt))))))))).
ont(equiv(grapes,and((˜hops),and((˜malt), (˜water))))).
ont(equiv(wine,and(drink, exist(hasingr, grapes)))).

ex1_2_1.pl:
sat(false).
query(and(exist(r, b), forall(r, (˜b)))).

ex1_2_2.pl:
sat(true).
query(and(exist(r, b), forall(r, or(a, (˜b))))).

ex1_2_3.pl:

Appendix C. Extended Mindswap Tests 72

sat(false).
query(and(exist(r, b), forall(r, (˜b)))).
ont(equiv(aa,or(a, (˜a)))).
ont(equiv(a,exist(r, exist(r, exist(r, c))))).
ont(equiv(b,and(a, and(exist(r, aa), or(aa, (˜aa)))))).

ex1_2_4.pl:
sat(false).
query(and(exist(r, b), forall(r, or(a, (˜b))))).
ont(equiv(a,(˜b))).

ex1_3.pl:
sat(true).
query(and(werewolf, human)).
ont(equiv(werewolf,and(animal, and(exist(haspower, magical),forall(speaks,
language))))).
ont(equiv(acramantula,and(beast,and(or(male, female),exist(haspower,
magical))))).
ont(equiv(wizard,and(male,and(human,exist(haspower, magical))))).
ont(equiv(centaur,and(animal,and((˜human),and(or(male, female),and(exist(
haspower, magical),forall(speaks, language))))))).
ont(equiv(vampire,and(beast,and(or(male, female),forall(haspower,
magical))))).
ont(equiv(beast,and(animal,(˜human)))).
ont(equiv(muggle,and(human,and(or(male, female),forall(haspower,
(˜magical)))))).
ont(equiv(witch,and(female,and(human, exist(haspower, magical))))).
ont(equiv(human,and(animal,exist(speaks, language)))).
ont(equiv(male,and(animal,(˜female)))).
ont(equiv(merpeople,and(animal,and((˜human),and(forall(haspower, magical),
forall(speaks, language)))))).

ex1_4.pl:
sat(false).
query(and(roundoff, (˜backhandspring))).
ont(equiv(salto,and(cartwheel, and((˜exist(hasposition, handsonfloor)),
exist(hasposition, twist))))).
ont(equiv(fronttuck,and((˜cartwheel),forall(hasposition, tuck)))).
ont(equiv(roundoff,and(cartwheel,and(handstand ,forall(hasposition,
pike))))).
ont(equiv(backwalkover,and(exist(hasposition, bridge),exist(hasposition,
handstand)))).
ont(equiv(forwardroll,or(exist(hasposition, pike),or(exist(hasposition,
straddle), exist(hasposition, tuck))))).
ont(equiv(backhandspring,exist(hasposition,bridge))).
ont(equiv(handstand,(˜forall(hasposition, pike)))).

ex1_5.pl:
sat(false).

Appendix C. Extended Mindswap Tests 73

query(and(werewolf, human)).
ont(equiv(werewolf,and(beast,and(exist(haspower, magical), forall(speaks,
language))))).
ont(equiv(acramantula,and(beast ,and(or(male, female), exist(haspower,
magical))))).
ont(equiv(wizard,and(male, and(human, exist(haspower, magical))))).
ont(equiv(centaur,and(animal,and((˜human), and(or(male, female), and(exist(
haspower, magical), forall(speaks, language))))))).
ont(equiv(vampire,and(beast,and(or(male, female), forall(haspower,
magical))))).
ont(equiv(beast,and(animal, (˜human)))).
ont(equiv(muggle,and(human,and(or(male, female), forall(haspower,
(˜magical)))))).
ont(equiv(witch,and(female,and(human, exist(haspower, magical))))).
ont(equiv(human,and(animal, exist(speaks, language)))).
ont(equiv(male,and(animal, (˜female)))).
ont(equiv(merpeople,and(animal,and((˜human),and(forall(haspower, magical),
forall(speaks, language)))))).

ex1_6.pl:
sat(false).
query(and(lessergnupubliclicense, forall(hasrestriction,
cannotredistribute))).
ont(equiv(academicfreelicense,and(freesoftwarelicense, exist(hasrestriction,
and(mustkeepdisclaimer, and((˜mustdistributemods), and((˜licenseisviral),
(˜cannotredistribute)))))))).
ont(equiv(commonpubliclicense,and(freesoftwarelicense, exist(hasrestriction,
and(mustkeepdisclaimer, and(mustdistributemods, and((˜licenseisviral),
(˜cannotredistribute)))))))).
ont(equiv(publicdomainlicense,and(freesoftwarelicense ,exist(hasrestriction,
(˜or(mustkeepdisclaimer, or(mustdistributemods, or(licenseisviral,
cannotredistribute)))))))).
ont(equiv(lessergnupubliclicense,and(freesoftwarelicense, exist(
hasrestriction, and(mustkeepdisclaimer, and(mustdistributemods,
and((˜licenseisviral), (˜cannotredistribute)))))))).
ont(equiv(commercialsoftwarelicense,exist(hasrestriction,
cannotredistribute))).
ont(equiv(softwarelicense,or(freesoftwarelicense, commercialsoftwarelicense))).
ont(equiv(opensoftwarelicense,and(freesoftwarelicense, exist(hasrestriction,
and(mustkeepdisclaimer,and(mustdistributemods, and(licenseisviral,
(˜cannotredistribute)))))))).
ont(equiv(gnugeneralpubliclicense,and(freesoftwarelicense, exist(
hasrestriction, and(mustkeepdisclaimer, and(mustdistributemods,
and(licenseisviral, (˜cannotredistribute)))))))).

ex1_7.pl:
sat(false).
query(and(puppy, and(mamadog, wifedog))).
ont(equiv(parentdog,or(papadog, mamadog))).

Appendix C. Extended Mindswap Tests 74

ont(equiv(husbanddog,and(maledog, exist(haswife, femaledog)))).
ont(equiv(maledog,and(dog, (˜female)))).
ont(equiv(papadog,and(maledog ,exist(haschild, dog)))).
ont(equiv(femaledog,and(dog, female))).
ont(equiv(wifedog,and(femaledog, exist(hashusband, maledog)))).
ont(equiv(puppy,and(or(maledog, femaledog), and(exist(hasmother,
mamadog),and(exist(hasfather, papadog) ,(˜exist(haschild, dog))))))).
ont(equiv(mamadog,and(femaledog, exist(haschild, dog)))).

ex1_8.pl:
sat(true).
query(or(and(or(a, b), or(c, d)), and(or(a, c), or(b, d)))).

ex1_9.pl:
sat(true).
query(and(hydra, and(dragonet, exist(elemental, fire)))).
ont(equiv(slitheringdragon,and(dragon, forall(transportmode, (˜or(flying,
walking)))))).
ont(equiv(walkingdragon,and(dragon, exist(transportmode, walking)))).
ont(equiv(firedrake,and(drake, and(forall(elemental, fire), exist(
disposition, foe))))).
ont(equiv(icedrake,and(drake, and(forall(elemental, water), exist(
disposition, foe))))).
ont(equiv(orientaldragon,and(walkingdragon, and(exist(elemental, water),
forall(disposition, friend))))).
ont(equiv(drake,and(walkingdragon, and(exist(elemental, or(water, fire)),
forall(disposition, foe))))).
ont(equiv(hydra,and(or(slitheringdragon, flyingdragon), exist(disposition,
foe)))).
ont(equiv(westerndragon,and(flyingdragon,and(forall(elemental, or(earth,
water)), exist(disposition, foe))))).
ont(equiv(wyrm,and(slitheringdragon, exist(elemental, water)))).
ont(equiv(flyingdragon,and(dragon, exist(transportmode, flying)))).
ont(equiv(dragonet,and(forall(disposition, foe),and(or(walkingdragon,
flyingdragon), forall(elemental, (˜or(earth, water))))))).

ex2_1.pl:
sat(false).
query(and(a, and(d, and(g, and((˜m), and((˜n), and((˜o), and((˜p), and((˜q),
and((˜r), and((˜s), and((˜t),and((˜u), and((˜v1), and((˜w),
(˜x)))))))))))))))).
ont(equiv(a,or(b, c))).
ont(equiv(c,or(o, p))).
ont(equiv(b,or(m, n))).
ont(equiv(e,or(q, r))).
ont(equiv(d,or(e ,f))).
ont(equiv(g,or(h ,i))).
ont(equiv(f,or(s ,t))).
ont(equiv(i,or(w ,x))).

Appendix C. Extended Mindswap Tests 75

ont(equiv(h,or(u ,v1))).

ex2_2.pl:
sat(false).
query(and(wifedog, husbanddog)).
ont(equiv(parentdog,or(papadog, mamadog))).
ont(equiv(husbanddog,and(maledog, exist(haswife, femaledog)))).
ont(equiv(maledog,and(dog, (˜female)))).
ont(equiv(papadog,and(maledog, exist(haschild, dog)))).
ont(equiv(femaledog,and(dog, female))).
ont(equiv(wifedog,and(femaledog, exist(hashusband, maledog)))).
ont(equiv(puppy,and(or(maledog, femaledog), and(exist(hasmother, mamadog),
and(exist(hasfather, papadog), (˜exist(haschild, dog))))))).
ont(equiv(mamadog,and(femaledog, exist(haschild, dog)))).

ex2_3.pl:
sat(false).
query(and(dragonet, (˜and(forall(disposition, foe), and(or(walkingdragon,
flyingdragon), forall(elemental, (˜or(earth, water)))))))).
ont(equiv(slitheringdragon,and(dragon, forall(transportmode, (˜or(flying,
walking)))))).
ont(equiv(walkingdragon,and(dragon, exist(transportmode, walking)))).
ont(equiv(firedrake,and(drake,and(forall(elemental, fire), exist(
disposition, foe))))).
ont(equiv(icedrake,and(drake, and(forall(elemental, water), exist(
disposition, foe))))).
ont(equiv(orientaldragon,and(walkingdragon, and(exist(elemental, water)
,forall(disposition, friend))))).
ont(equiv(drake,and(walkingdragon, and(exist(elemental, or(water, fire)),
forall(disposition, foe))))).
ont(equiv(hydra,and(or(slitheringdragon, flyingdragon), exist(disposition,
foe)))).
ont(equiv(westerndragon,and(flyingdragon,and(forall(elemental, or(earth,
water)), exist(disposition, foe))))).
ont(equiv(wyrm,and(slitheringdragon, exist(elemental, water)))).
ont(equiv(flyingdragon,and(dragon, exist(transportmode, flying)))).
ont(equiv(dragonet,and(forall(disposition, foe),and(or(walkingdragon,
flyingdragon), forall(elemental, (˜or(earth, water))))))).

ex2_4.pl:
sat(true).
query(and(exist(p, or(a, or(b, c))), and(exist(q, or(d, or(e, f))),
forall(p, and(c, d))))).
ont(equiv(b,and((˜a), a))).
ont(equiv(f,exist(p, and(g, h)))).

ex2_5.pl:
sat(false).
query(and(nonfiction, childrensbook)).

Appendix C. Extended Mindswap Tests 76

ont(equiv(map,and(exist(contains, words), (˜or(pictures, chapters))))).
ont(equiv(nonfiction,and((˜fiction),and(exist(contains, chapters) ,forall(
contains, words))))).
ont(equiv(childrensbook,forall(contains, and(pictures, (˜words))))).
ont(equiv(fiction,or(map, and(chapters, words)))).

ex2_7.pl:
sat(true).
query(and(b, and(c, and(exist(p, and(a, and(c, exist(r, (˜d))))), forall(
r, d))))).

ex2_8.pl:
sat(false).
query(and(forall(r, and(a, b)), and(exist(r, a), exist(r, b)))).
ont(equiv(b,(˜a))).

ex2_9.pl:
sat(true).
query(and(veggiepizza, meatpizza)).
ont(equiv(veggiepizza,and(pizza, forall(hastopping, (˜meat))))).
ont(equiv(meatpizza,and(pizza, forall(hastopping, (˜veggie))))).
ont(equiv(veggie,or(mushroom, olive))).
ont(equiv(meat,or(pepperoni ,sausage))).

ex3_1.pl:
sat(false).
query(and(and(and(dalek, cyborg), and(and(cyberman, forall(hasweakness,
sonicscrewdriver)), and(and(silurian, monster), and(and(timelord, forall(
hasweakness, bullets)), and(quark, exist(hasweakness, gold)))))), (˜and(and(
timelord, monster), and(and(timelord, dalek), and(quark, humanoid)))))).
ont(equiv(dalek,and(biological, and(mechanical, forall(hasweakness,
blindness))))).
ont(equiv(monster,and(biological,and((˜humanoid), exist(hasweakness,
bullets))))).
ont(equiv(humanoid,and(biological,and((˜mechanical), forall(hasweakness,
bullets))))).
ont(equiv(cyberman,and(cyborg, forall(hasweakness, gold)))).
ont(equiv(timelord,and(biological, humanoid))).
ont(equiv(silurian,and(biological, forall(hasweakness, bullets)))).
ont(equiv(robot,and(mechanical, and((˜biological),and(forall(hasweakness,
logicalparadox), exist(hasweakness, sonicscrewdriver)))))).
ont(equiv(quark,(robot))).
ont(equiv(cyborg,and(mechanical,and(biological,and(exist(hasweakness,
bullets), exist(hasweakness, sonicscrewdriver)))))).

ex3_3.pl:
sat(false).
query(and(maledog, femaledog)).
ont(equiv(parentdog,or(papadog,mamadog))).

Appendix C. Extended Mindswap Tests 77

ont(equiv(husbanddog,and(maledog, exist(haswife, femaledog)))).
ont(equiv(maledog,and(dog, (˜female)))).
ont(equiv(papadog,and(maledog, exist(haschild, dog)))).
ont(equiv(femaledog,and(dog, female))).
ont(equiv(wifedog,and(femaledog, exist(hashusband, maledog)))).
ont(equiv(puppy,and(or(maledog, femaledog),and(exist(hasmother,
mamadog),and(exist(hasfather, papadog), (˜exist(haschild, dog))))))).
ont(equiv(mamadog,and(femaledog, exist(haschild, dog)))).

ex3_4.pl:
sat(false).
query(and((˜forall(p, a)), (˜exist(p, (˜a))))).
ont(equiv(a,(˜and(b, and(c, d))))).
ont(equiv(c,(˜or(f, (˜f))))).
ont(equiv(b,(˜or(e, (˜e))))).
ont(equiv(d,(˜or(g, (˜g))))).

ex3_5.pl:
sat(true).
query(and(g5, (˜digslr))).
ont(equiv(g5,and(or(exist(uses, film), exist(has, zoom)), (˜lcd)))).
ont(equiv(digslr,and(slr,and(digital, lcd)))).
ont(equiv(slr,and(film ,zoom))).
ont(equiv(digital,and((˜film) ,exist(has, zoom)))).

ex3_7.pl:
sat(true).
query(and(a, and(b, and(forall(p, c), and(forall(p, (˜c)), exist(r,
d)))))).

ex3_9.pl:
sat(true).
query(or((˜wierdopizza), veggiepizza)).
ont(equiv(wierdopizza,and(pizza, exist(hastopping, alien)))).
ont(equiv(meatpizza,and(pizza, forall(hastopping, (˜veggie))))).
ont(equiv(meat,or(pepperoni, sausage))).
ont(equiv(veggie,or(mushroom, olive))).
ont(equiv(alien,(anchovy))).
ont(equiv(veggiepizza,and(pizza, forall(hastopping, (˜meat))))).

x_ex_aa.pl:
:- ensure_loaded(’x_onto.pl’).
sat(true).
query(disjoint(brother,sister)).

x_ex_ab.pl:
:- ensure_loaded(’x_onto.pl’).
sat(true).
query(disjoint(man,woman)).

Appendix C. Extended Mindswap Tests 78

x_ex_ac.pl:
:- ensure_loaded(’x_onto.pl’).
sat(false).
query(subsum(luckyBrother,brother)).

x_ex_ad.pl:
:- ensure_loaded(’x_onto.pl’).
sat(true).
query(subsum(father,parent)).

x_ex_ae.pl:
:- ensure_loaded(’x_onto.pl’).
sat(true).
query(subsum(grandfather,father)).

x_ex_af.pl:
:- ensure_loaded(’x_onto.pl’).
sat(false).
query(disjoint(grandfather,father)).

x_ex_ag.pl:
:- ensure_loaded(’x_onto.pl’).
sat(true).
query(disjoint(grandfather,sister)).

x_ex_ah.pl:
:- ensure_loaded(’x_onto.pl’).
sat(true).
query(and(a,b)).

x_ex_ai.pl:
:- ensure_loaded(’x_onto.pl’).
sat(false).
query(and(a,˜a)).

x_ex_aj.pl:
:- ensure_loaded(’x_onto.pl’).
sat(true).
query(or(a,b)).

x_ex_ak.pl:
:- ensure_loaded(’x_onto.pl’).
sat(true).
query(and(a,and(b,or(a,b)))).

x_ex_al.pl:
:- ensure_loaded(’x_onto.pl’).
sat(true).

Appendix C. Extended Mindswap Tests 79

query(and(a,and(b,or(a,˜b)))).

x_ex_am.pl:
:- ensure_loaded(’x_onto.pl’).
sat(true).
query(exist(r,a)).

x_ex_an.pl:
:- ensure_loaded(’x_onto.pl’).
sat(true).
query(and(exist(r,a),exist(r,˜a))).

x_ex_ao.pl:
:- ensure_loaded(’x_onto.pl’).
sat(false).
query(and(forall(r,a),and(exist(r,a),exist(r,˜a)))).

ex3_2.pl:
sat(true).
query(and(westerndragon, orientaldragon)).
ont(equiv(slitheringdragon,and(dragon, forall(transportmode, (˜or(flying,
walking)))))).
ont(equiv(walkingdragon,and(dragon, exist(transportmode, walking)))).
ont(equiv(firedrake,and(drake,and(forall(elemental, fire), exist(
disposition, foe))))).
ont(equiv(icedrake,and(drake,and(forall(elemental, water), exist(
disposition, foe))))).
ont(equiv(orientaldragon,and(walkingdragon,and(exist(elemental, water)
,forall(disposition, and(friend, exist(towards, or(people, animals)))))))).
ont(equiv(drake,and(walkingdragon,and(exist(elemental, or(water, fire)),
forall(disposition, foe))))).
ont(equiv(hydra,and(or(slitheringdragon, flyingdragon), exist(disposition,
foe)))).
ont(equiv(westerndragon,and(flyingdragon,and(forall(elemental, or(earth,
water)), exist(disposition, and(foe, exist(towards, people))))))).
ont(equiv(wyrm,and(slitheringdragon, exist(elemental, water)))).
ont(equiv(flyingdragon,and(dragon, exist(transportmode, flying)))).
ont(equiv(dragonet,and(forall(disposition, foe),and(or(walkingdragon,
flyingdragon), forall(elemental, (˜or(earth, water))))))).

x_onto.pl:
ont(equiv(man,and(person,male))).
ont(equiv(woman,and(person,˜man))).
ont(equiv(mother,and(woman,exist(hasChild,person)))).
ont(equiv(father,and(man,exist(hasChild,person)))).
ont(equiv(parent,exist(hasChild,person))).
ont(equiv(grandfather,and(man,exist(hasChild,father)))).
ont(equiv(brother,and(man,exist(hasSibling,person)))).
ont(equiv(sister,and(person,and(˜brother,exist(hasSibling,person))))).

Appendix C. Extended Mindswap Tests 80

ont(equiv(luckyBrother,and(man,forall(hasSibling,sister)))).

Appendix D

Supported Ontology Format

This is a simple grammar that basically explains in which Prolog termsALC expres-

sions have to be expressed in, in order to be understandable fortableaux.pl. This was

also the format I used for the extended Mindswap tests, and from which I converted

for the other Prolog implementations.

DLexpression :: DLconcept | DLaxiom | DLquery

DLquery :: equiv(DLconcept, DLconcept) |

subsum(DLconcept, DLconcept) |

disjoint(DLconcept, DLconcept) |

unsat(DLconcept) |

DLconcept

DLaxiom :: ont(equiv(PrimitiveConcept, DLconcept))

DLconcept :: PrimitiveConcept |

and(DLconcept, DLconcept) |

or(DLconcept, DLconcept) |

exist(Relation, DLconcept)|

forall(Relation,DLconcept)|

˜DLconcept

PrimitiveConcept :: PrologLiteral

Relation :: PrologLiteral

81

Appendix E

Ontology Translation Grammars

The following grammar predicates have been used to translate between the various

ontology representations. Their main use is in theget files/[1,2] predicates (cf. F) to

translate between T98-sat Lisp-style syntax and the alternative Prolog styles and my

own (cf. D).

:- op(90,fy,˜). % ˜A (negation)

% parse Racer Lisp into my format
c(X) --> [’(’], com(C), dl(X), [’)’].
dl(X) --> [’(’], dle(X), [’)’].
dl(X) --> dle(X).
dle(˜X) --> [not], dl(X).
dle(R) --> con(C), dl(X), dl(Y), {R =.. [C,X,Y]}.
dle(X) --> [X],{atom(X)}.
con(X) --> [Y],{con(Y,X)}.
con(and,and).
con(or,or).
con(some,exist).
con(all,forall).
com(X) --> [X], {com(X)}.
com(’alc-concept-coherent’).

% (experimental transformations)
i(X) --> [’(’], com(C), dl1(X), [’)’].
dl1(X) --> [’(’], dle1(X), [’)’].
dl1(X) --> dle1(X).
dle1(˜X) --> [not], dl1(X).
dle1(R) --> andor(C), dl1(X), dl1(Y), {R =.. [C,X,Y]}.
dle1(R) --> allsome(C), dl1(X), dl1(Y), {R =.. [C,X,Y]}.
dle1(R) --> [R], {atom(R)}.
andor(X) --> [Y],{andor(Y,X)}.
andor(and,&).
andor(or,u).

82

Appendix E. Ontology Translation Grammars 83

allsome(X) --> [Y],{allsome(Y,X)}.
allsome(some,exist).
allsome(all,forall).

% transform my format into Stuart Aitkens’s
f(exist(A,B),exists(A1,B1)) :- f(A,A1),f(B,B1).
f(forall(A,B),forall(A,B1)) :- f(B,B1).
f(and(A,B),intersectionOf(A1,B1)) :- f(A,A1),f(B,B1).
f(or(A,B),unionOf(A1,B1)) :- f(A,A1),f(B,B1).
f(˜A,complementOf(A1)) :- f(A,A1).
f(X,X) :- atom(X).

% transfrom my format into Adam Meissner’s
l(exist(A,B),ex(A1,B1)) :- l(A,A1),l(B,B1).
l(forall(A,B),all(A,B1)) :- l(B,B1).
l(and(A,B),’&’(A1,B1)) :- l(A,A1),l(B,B1).
l(or(A,B),’v’(A1,B1)) :- l(A,A1),l(B,B1).
l(˜A,’-’(A1)) :- l(A,A1).
l(X,X) :- atom(X).

Appendix F

Test Driver Scripts

The following programs have been used as driver scripts for the benchmark tests. The

first runs the various Prolog implementations against the extended Mindswap tests (or

a subset thereof). The invocation of a test run looked like

pl -s regtest.pl -g ”getfiles(’I ’,R).” -t halt.

where I is the path to a file containing the list of test cases to run (e.g.test pl/

index.pl) andR is one of [tabl|fact|lpdl], depending on the system you want to run.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% reg_test.pl %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% currently, this has to be run from test_pl/.., where test_pl
% contains the extended Mindswap tests in Prolog
:- consult([’/home/s0564890/div/courses/diss/code/tableaux.pl’,

’/home/s0564890/div/courses/diss/code/grammar1.pl’
]).

syst(fact,’/home/s0564890/div/courses/diss/code/stuart/fact.pl’).
syst(lpdl,’/home/s0564890/div/courses/diss/code/meissner/lpdl.pl’).

% dir interface
get_files(Dir,Sys):-

(memberchk(Sys,[’fact’,’lpdl’]) ->
syst(Sys,P), % get system file name
consult(P); % load system to run
true),

consult(Dir), % get list of test files
flist(Files), % into a variable
eval_files(Files,Sys),
true.

eval_files([F|T],S):-
eval_file(F,S),

84

Appendix F. Test Driver Scripts 85

eval_files(T,S).

eval_file(File1,tabl):-
string_concat(’test_pl/’,File1,File),
consult(File),
query(Q),
sat(S),
time((proof(Q) ->

S1 = true;
S1 = false)),

(S1 = S ->
report(File,ok);
report(File,err)).

eval_file(File1,fact):-
string_concat(’test_pl/’,File1,File),
consult(File),
write(’Testing file: ’), write(File), nl,
query(Q_1),
trans(Q_1,Q,S),
%sat(S),
expand_defs(Q,Q1),
f(Q1,Q2), % translate
!,
time((star(Q2) ->

S1 = false;
S1 = true)),

(S1 = S ->
report(File,ok);
report(File,err)),

true.

eval_file(File1,lpdl):-
string_concat(’test_pl/’,File1,File),
consult(File),
write(’Testing file: ’), write(File), nl,
query(Q_1),
trans(Q_1,Q,S),
expand_defs(Q,Q1),
l(Q1,Q2), % translate
!,
time((th(unsatisfiable(Q2)) ->

S1 = false;
S1 = true)),

(S1 = S ->
report(File,ok);
report(File,err)),

true.

Appendix F. Test Driver Scripts 86

report(File,ok):-
write(File),write(’: ok’),nl.

report(File,err):-
write(File), write(’: err’),nl.

% creates the goal from the query (for fact.pl)
trans(subsum(A,B),and(A,˜B),S1) :-

sat(S),
invers(S,S1),
!.

trans(disjoint(A,B),and(A,B),S1) :-
sat(S),
invers(S,S1),
!.

trans(X,X,S):- sat(S),!.

invers(true,false).
invers(false,true).

The second program is the Prolog script to invoketableaux.plon a single test from

the T98-sat test suite. It is called by a Perl script (later in this chapter), and depends on

its preparations.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% reg_t98.pl %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
:- consult([’/home/s0564890/div/courses/diss/code/tableaux.pl’,

’/home/s0564890/div/courses/diss/code/grammar1.pl’,
’/home/s0564890/tmp/t1.pl’]).

get_files(Sat):-
t(L), % load the query
c(E,L,[]), % compile into my format
!,
(proof(E) -> % run the proof

S1 = true;
S1 = false),

(S1 = Sat ->
write(’ ok’);
write(’ err’)),nl,

true.

The third one is a glue script in Perl that drives the previous Prolog program. It

controls the conversion of the input files into Prolog terms using another Perl script

(tok.perl further down). It then invokes the Prolog interpreter to run a single test file

Appendix F. Test Driver Scripts 87

and times its execution. The variable$Satisfiable p has to be adapted to whether

the test case is from a *p.alc (‘false’) or * n.alc (‘true’) file.

#!/usr/bin/perl
#####################################
reg_t98.perl
#####################################
This is to run tableaux.pl on a list of files from the T98-sat automatically
$Satisfiable_p = ’false’;

command to start Prolog
$p_cmd = qq ?pl -s reg_t98.pl -g ’get_files($Satisfiable_p).’ -t halt.?;

while (<>) { # read list of input files
$file = $_;
chomp($file);
$file =˜ m{ˆ.*/(\S+)$}; print ">>$1: "; # print base name
convert syntax
$cmd = qq ?perl -pe ’s/\\n/ /g;’ $file |tok.perl|? .

qq ?perl -ne ’BEGIN{print "t(";};chomp;print;END{print ").\\n";}’? .
qq ? > ˜/tmp/t1.pl?;

system($cmd) and die " Cannot convert file: $_"; # system(success)=0
system("time $p_cmd") and die " Prolog not running: $_";

}

tok.perl is a little Perl script that tokenises a Lisp-like DL expression and does

some sanitation on it so it can be properly parsed into a Prolog term by the grammar

predicates (cf. App. E). All tokens are converted to lower case, and where necessary

quoted.

#!/usr/bin/perl
#####################################
tok.perl
#####################################
tokenise DL-Benchmark-T98-sat single queries
maybe run: perl -pe ’s/\n/ /g;’ before (get rid of multiple lines)

while(<>) {
@F=split(/(?:([()])|\s+)/);
$L="[";
for $i (@F){

$i = lc($i);
$i =˜ /ˆ\s*$/ and next;
$i =˜ /command=/i and next;
$i =˜ /ˆ([()])$/ and do {$i = "\’$1\’";};
$i =˜ /-/ and $i = "\’$i\’";
$i =˜ /*(?:bottom|top)*/ and $i = "\’$i\’";
$L .= "$i, ";

Appendix F. Test Driver Scripts 88

}
chop $L; chop $L;
$L .= "]";
print "$L\n";

}

Bibliography

[1] F. C. N. Pereira and S. M. Shieber,Prolog and Natural Language Analysis. Stan-

ford: CSLI Publications, 1987.

[2] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, eds.,

The Description Logic Handbook. Cambridge, UK: Cambridge University Press,

2003.

[3] S. Aitken, “Knowledge Modelling and Management.

Part A ‘Ontologies’.” Lecture Notes, 2006. URL

http://www.inf.ed.ac.uk/teaching/courses/kmm/lectures.html.

[4] F. Baader and W. Nutt, “Basic Description Logics,” inThe Description Logic

Handbook, pp. 43–95, Cambridge University Press, 2003.

[5] I. Horrocks,Optimising Tableaux Decision Procedures For Description Logics.

PhD thesis, University of Manchester, 1997.

[6] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F.

Patel-Schneider, and L. A. Stein, “OWL Web Ontology Language Reference.”

W3C Recommendation, 2004. URL http://www.w3.org/TR/2004/REC-owl-ref-

20040210/.

[7] I. Horrocks, P. Patel-Schneider, and F. van Harmelen, “From SHIQ and RDF

to OWL: The making of a web ontology language,”Journal of Web Semantics,

vol. 1(1), pp. 7–26, 2003.

[8] F. Baader and U. Sattler, “An overview of tableau algorithms for description log-

ics,” Studia Logica, vol. 69, no. 1, pp. 5 – 40, 2001/10/.

[9] F. Baader, J. Hladik, C. Lutz, and F. Wolter, “From Tableaux to Automata for

Description Logics,”Fundamenta Informaticae, vol. 57, no. 2-4, pp. 247 – 279,

2003.

89

Bibliography 90

[10] F. Baader and U. Sattler, “Tableau Algorithms for Description Logics,” inPro-

ceedings of the International Conference on Automated Reasoning with Tableaux

and Related Methods (Tableaux 2000)(R. Dyckhoff, ed.), vol. 1847, pp. 1–18,

Springer, 2000.

[11] M. Schmidt-Schauss and G. Smolka, “Attributive concept descriptions with com-

plements,”Artificial Intelligence, vol. 48, no. 1, pp. 1 – 26, 1991/02/.

[12] V. Haarslev and R. M̈oller, “RACER system description,” inProceedings of

the 1st International Joint Conference on Automated Reasoning (IJCAR 2001)

(R. Goŕe, A. Leitsch, and T. Nipkow, eds.), no. 2083 in Lecture Notes in Com-

puter Science, pp. 701–705, Springer-Verlag.

[13] I. Horrocks, “The FaCT system,”Automated Reasoning with Analytic Tableaux

and Related Methods. International Conference, TABLEAUX’98. Proceedings,

pp. 307 – 12, 1998.

[14] B. Beckert and J. Posegga, “leanTAP: Lean tableau-based deduction,”Journal of

Automated Reasoning, vol. 15, no. 3, pp. 339 – 358, 1995.

[15] J. Wielemaker, “An Overview of the SWI-Prolog Programming Environment,”

in Proceedings of the 13th International Workshop on Logic Programming Envi-

ronments(F. Mesnard and A. Serebrenik, eds.), vol. CW371 ofReport, pp. 1–16,

Katholieke Universiteit Leuven, Department of Computer Science, Celestijnen-

laan 200A, B-3001 Heverlee (Belgium), 2003.

[16] A. Meissner, “An automated deduction system for description logic with ALCN

language,”Studia z Automatyki i Informatyki, vol. 28-29, pp. 91 – 110, 2004//.

[17] A. Meissner, “lpdl.pl.” A Prolog implementation of Tableaux based on [16]. un-

published, 2006.

[18] S. Aitken, “fact.pl.” A Prolog implementation of Tableaux. unpublished, 2006.

[19] I. Horrocks, “Reasoning with Expressive Description Logics: Theory and Prac-

tice,” in Automated Deduction - CADE-18. 18th International Conference on Au-

tomated Deduction. Proceedings(A. Voronkov, ed.), vol. 2392 ofLecture Notes

in Artificial Intelligence, pp. 1–15, Springer, 2002.

Bibliography 91

[20] S. J. Russell and P. Norvig,Artificial Intelligence. A Modern Approach. Upper

Saddle River, NJ: Pearson Education, 2nd ed., 2003.

[21] I. Horrocks and P. F. Patel-Schneider, “DL Systems Comparison (Summary Rela-

tion),” in Proceedings of the 1998 International Workshop on Description Logics

(DL’98), IRST, Povo - Trento, Italy, June 6-8, 1998(E. Franconi, G. D. Giacomo,

R. M. MacGregor, W. Nutt, and C. A. Welty, eds.), vol. 11 ofCEUR Workshop

Proceedings, CEUR-WS.org, 1998.

[22] P. Balsiger, A. Heuerding, and S. Schwendimann, “A benchmark method for the

propositional modal logics K, KT, S4,”Journal of Automated Reasoning, vol. 24,

no. 3, pp. 297 – 317, 2000/04/.

[23] P. Patel-Schneider and B. Swartout, “Description Logic Knowledge Represen-

tation System Specification from the KRSS Group of the ARPA Knowledge

Sharing Effort,” tech. rep., AT&T Bell Laboratories, 1993. URL: http://www-

db.research.bell-labs.com/user/pfps/publications/krss-spec.pdf.

[24] H. Boley, “The Rule Markup Language: RDF-XML data model, XML schema

hierarchy, and XSL transformations,”Web Knowledge Management and Decision

Support. 14th International Conference on Applications of Prolog, INAP 2001.

Revised Papers (Lecture Notes in Artificial Intelligence Vol.2543), pp. 5 – 22,

2003//.

[25] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker, “Description logic programs:

combining logic programs with description logic,” inWWW ’03: Proceedings of

the 12th international conference on World Wide Web, (New York, NY, USA),

pp. 48–57, ACM Press, 2003.

[26] A. Felty and D. Miller, “Proof Explanation and Revision,” tech. rep., University

of Pennsylvania, 1987. URL http://www.site.uottawa.ca/ afelty/dist/proof87.ps.

[27] K. Sagonas, T. Swift, and D. Warren, “XSB as an efficient deductive database

engine,”SIGMOD Record, vol. 23, no. 2, pp. 442 – 453, 1994/06/.

[28] K. Konrad, “HOT: A Concurrent Automated Theorem Prover based on Higher-

Order Tableaux,”Theorem Proving in Higher Order Logics. 11th International

Conference, TPHOLs ’98. Proceedings, pp. 245 – 261, 1998.

Bibliography 92

[29] J. Cunningham, “Concurrent Tableaux.” First COMPULOG NET Workshop on

Parallelism and Implementation Technologies; Madrid May 24–25, 1993. URL:

http://clip.dia.fi.upm.es/Projects/COMPULOG/meeting93/ctableaux.ps.Z.

[30] S. Bechhofer, R. M̈oller, and P. Crowther, “The DIG Description Logic Inter-

face,” inProceedings of the 2003 International Workshop on Description Logics

(DL2003)(D. Calvanese, G. D. Giacomo, and E. Franconi, eds.), vol. 81, CEUR-

WS.org, 2003. URL: http://ceur-ws.org/Vol-81/bechhofer.ps.

[31] Z. Huang and C. Visser, “Extended DIG Description Logic Interface Support

for Prolog. SEKT Deliverable D3.4.1.2,” tech. rep., Free University of Am-

sterdam, as part of the SEKT project (www.sect-project.org), 2004. URL:

http://wasp.cs.vu.nl/∼huang/papers/dig.pdf.

