
Addressing Constraint Failures in Agent Interaction
Protocol

Fadzil Hassan, Dave Robertson and Chris Walton

Center for Intelligent Systems and their Applications (CISA),
School of Informatics, University of Edinburgh, Scotland, UK.

E-mail: s0090693@sms.ed.ac.uk, {dr,cdw}@inf.ed.ac.uk Tel: +44-(0) 131-651-4155

Abstract. The field of multi-agent systems shifts attention from one particular
agent to a society of agents; hence the interactions between agents in the society
become critical towards the achievement of their goals. We assume that the in-
teractions are managed via an agent protocol which enables agents to coordi-
nate their actions in order to handle the dependencies that exist between their
activities. An agent’s failure to comply with the constraints attached within the
protocol might cause a brittle protocol to fail. To address this problem, a con-
straint relaxation approach is applied using a distributed protocol language
called the Lightweight Coordination Calculus (LCC). This paper describes the
design and implementation of a constraint relaxation module to be integrated
within the LCC framework. The working of this module is later illustrated us-
ing a scenario involving the ordering and configuration of a computer between
the customer and vendor agents.

1 Introduction

In the area of multi-agent systems (MAS), constraints and rules are used to guide the
cooperative, coordinative or even competitive behaviours of agents. As described in
[1], the application of constraint-based specification within the domain of agent
communication and coordination includes determining the allowed sequence of com-
municative acts between agents, commonly referred to as an Agent Interaction Proto-
col (AIP). AIPs are used to specify the set of allowed message types (i.e. performa-
tives), message contents and the correct order of messages during the dialogues
between agents [2], and become the basis for agent negotiation and cooperation [3].
Protocols provide a useful framework for coordinating agent conversation as agents
using a particular protocol are obligated to obey the interactive rules specified by the
protocols.

To date, a number of tools and languages have been proposed to model and im-
plement agent interaction protocols, for instance Electronic Institutions [4] and Con-
versation Policy [5]. However, there are a number of shortcomings with these ap-
proaches. They are based on static state-based diagrams, and normally are not directly
executable. They also require a centralised mechanism to synchronise the coordina-
tion between agents [6]. An AIP language, called the Lightweight Coordination Cal-
culus (LCC), has been proposed to overcome these limitations [6-8]. This language,

which is derived from process calculus, relaxes the static specification of agent inter-
action protocols as state-based diagram and allows the protocols to be defined and
disseminated in a flexible manner during agent interaction. In LCC, coordination is
achieved via an interaction model in which participating agents assume roles con-
strained by the social norms of their shared task; the state of the interaction reflecting
the ways these constraints are mutually satisfied within some system for synchronisa-
tion that is open and distributed [8].

LCC interaction protocols are brittle, in a sense that the constraints that they con-
tain must either succeed or fail, and if they fail the entire protocol may fail [9]. Con-
sequently, protocol failure will cause the dialogue between agents to break, even
though the interacting agents could in principle reach an agreement. Therefore, in this
paper, we describe the design and implementation of a constraint relaxation approach
within a particular AIP framework (LCC), in order to address the brittleness problem
mentioned earlier. The approach is focused on finite-domain constraints involving bi-
lateral, peer-to-peer multi-agent interaction patterns. This proposed approach is han-
dled by the participating agents themselves without any reliance to a third-party me-
diator, thus ensuring that issues like invasion of privacy and the bottleneck problem
can be addressed. To demonstrate this approach, it is applied to a short but (by current
standards of web service interaction) complex scenario that deals with the purchase
and configuration of a computer between the customer and vendor agents. The sce-
nario, borrowed from [7], is as follows:

An internet-based agent acting on behalf of a customer wants to buy a computer but
doesn’t know how to interact with other agents to achieve this, so it contacts a service
broker. The broker supplies the customer agent with the necessary interaction informa-
tion. The customer agent then has a dialogue with the given computer vendor in which
the various configuration options and pricing constraints are reconciled before a pur-
chase is finally made.

The remainder of this paper is organised as follows: Section 2 provides a review of
the LCC interaction framework; the LCC protocol language and the mechanism used
in implementing the framework. Using the scenario, in section 3 we describe the con-
straint handling aspect of the LCC interaction protocol, the brittleness problem faced
by the current work and how this leads to the proposed research work. Section 4 pro-
vides a discussion on the design of the proposed constraint relaxation module to ad-
dress the brittleness problem. Section 5 provides an example demonstrating the appli-
cation of the approach to the mentioned scenario. Further work and potential
shortcomings of the approach are discussed in Section 6, where this paper concludes.

2 Overview of LCC Interaction Framework

2.1 The LCC Protocol Language

LCC borrows the notion of role from agent systems that enforce social norms but re-
interprets this in a process calculus. Figure 1 defines the abstract syntax of LCC. An
interaction model in LCC is a set of clauses, each of which defines how a role in the

interaction must be performed. Roles are described by the type of role and an identi-
fier for the individual agent undertaking that role. The definition of performance of a
role is constructed using combinations of the sequence operator (‘then’) or choice op-
erator (‘or’) to connect messages and changes of role. Messages are either outgoing to
another agent in a given role (‘⇒’) or incoming from another agent in a given role
(‘⇐’). Message input/output or change of role can be governed by a constraint (‘C’)
defined using the normal logical operators for conjunction, disjunction and negation.
Constraints are marked by ‘ ’, which indicate the requirements or consequences for
an agent on the performatives or roles available to it. The clauses of the protocol are
arranged so that, although the constraints on each role are independent of others, the
ensemble of clauses operates to give the desired overall behaviour.

Fig. 1. Abstract syntax of LCC interaction framework

2.2 Implementing the Protocol Framework

The format of messages communicated between the agents within the LCC frame-
work is as follows:

i. A message must contain (at least) the following information, which can be en-
coded and decoded by the sending and receiving mechanisms attached to each
agent:

• An identifier, I, for the social interaction to which the message belongs.
• A unique identifier, A, for the agent intended to receive the message.
• The role, R, assumed of the agent in identifier A with respect to the message.
• The message content, M, expressed in an ontology understood by the agents.
• The protocol, P, of the form P:=<T,F,K> for continuing the social interac-

tion. T is the dialogue state. This is a record of the path of the dialogue
through the conversation space and the current state of the dialogue for the
agents. The second part is a set, F, of LCC clauses defining the dialogue
framework (based on syntax in Figure 1); and the final part, a set K, of axi-
oms consisting of common knowledge to be publicly known between the
agents.

Framework := {Clause,…}
Clause := Role::Def

Role := a(Type,Id)
Def := Role | Message | Def then Def | Def or Def | null C

Message := M ⇒ Role | M ⇒ Role C | M ⇐ Role | C M ⇐ Role
C := Term| ¬C | C ∧ C | C ∨ C

Type := Term
M := Term

Where null denotes an event, which does not involve message passing; Term is a
structured term in Prolog syntax and Id is either a variable or a unique identifier for
the agent.

ii. The agent must have a mechanism for satisfying any constraints associated
with its clause in the dialogue framework. Where these constraints can be satis-
fied from common knowledge (the set of K above) it is possible to supply stan-
dard constraint solvers with the protocol, in order to handle a more complex
constraints, which will be described in details in section 3.1.

Given these assumptions about the message format, the basic operation an agent
must perform when interacting via LCC is to decide what the next steps for its role in
the interaction should be, using the information carried with the message it obtains
from some other agent. An agent is capable of conforming to a LCC protocol if it is
supplied with a way of unpacking any protocol it receives; finding the next moves
that it is permitted to take; and updating the state of the protocol to describe the new
state of the dialogue. Rewrite rules can be applied to achieve these, and further details
with regards to this mechanism and LCC in general can be found in [6-8].

3 Return to Scenario

For this work, the given scenario is formalised as an incremental Multiagent Agree-
ment Problem (MAP) [10], where the process of reaching a mutual agreement re-
quires each attribute (i.e. configuration options and pricing constraints) of the com-
puter to be communicated on an attribute-by-attribute basis among the interacting
agents. The interacting agents must jointly map elements from one set, which are
modeled as the attributes or variables, to elements of the second set, which are mod-
eled as values, satisfying both intra-agent and inter-agent constraints. In incremental
MAP, agents are expected to choose values for variables to satisfy not only their own
intra-agent constraints, but also inter-agent constraints with other agents. To ensure
that inter-agent constraints are satisfied, agents must coordinate the choice values for
variables through an interaction protocol. Further details with regards to the intra-
agent and inter-agent constraints covered in this work are described in section 3.1

3.1 LCC Protocol for MAP

The LCC interaction protocol for the scenario introduced in section 1 are defined in
expressions 1-4, which are borrowed from works described in [7]. As described in
the given interaction protocol clauses, an agent, assuming the role of a customer, asks
to buy an item of type X from the vendor, then enters into a negotiation with the ven-
dor about the attributes required to configure the item to the customer requirements.
The negotiation is simply a recursive dialogue between the vendor and customer with,
for each attribute (A) in the set of attributes (S), the vendor offering the available at-
tribute and the customer accepting it, as illustrated in expressions 2 and 4 respec-
tively.

C).[]),V,(X,a(neg_cust
then V) sells(X, need(X)V)a(vendor,)ask(buy(X)

::)C,customer(a
∧←⇒

=

(1)

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
←⇒

⇐

=

C)]),A|[att(A)V,(X,a(neg_cust
 then (A)acceptable V)_),C,(X,a(neg_vendaccept(A)

then V)_),C,(X,a(neg_vendoffer(A)

::C)),AV, (X,a(neg_cust

s

s

(2)

S)(X,attributesV)S),C,(X,a(neg_vend
then C),a(customer)ask(buy(X)

::V)a(vendor,

←
⇐
=

(3)

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⇐

∧=←⇒

=

V)T),C,(X,a(neg_vend
then C)_),V,(X,a(neg_custaccept(A)

then A)available(T] |[AS C)_),V,(X,a(neg_custoffer(A)

::V)S),C,(X,a(neg_vend

(4)

Realising Inter-Agent Constraints. The protocol ensures coherence of interaction
between agents by imposing constraints relating to the message they send and receive
in their chosen roles. The clauses of a protocol are arranged so that, although the in-
tra-agent constraints on each role are independent of others, the ensemble of clauses
operates to give the desired overall behaviour, towards the realisation of inter-agent
constraints. For instance, as defined in expressions 2 and 4, the protocol places two
constraints on each attribute (A) in the set of attributes (S) of the computer to be pur-
chased: the first (available(A)) of expression 4 is a condition on the agent in the role
of negotiating vendor sending the message offer(A) and second (acceptable(A)) of ex-
pression 2 is a condition on the agent in the role of negotiating customer sending the
message accept(A) in reply. By (separately) satisfying these intra-agent constraints the
agents mutually constrain the attribute A.

Specifying Intra-Agent Constraints. Finite-domains formalism is used to assign a
range of valid domain values that can be assigned to the set of attributes S. This
means, that given a set of attributes S = {A1,..,An}, there exists a set of domain values
D={D1,..,Dn}: where each Di(1 ≤ i ≤ n) is a set of possible finite-domain values for at-
tribute Ai. As described in [11], finite-domains can be formalised as constraint Ai::Di
which means that the value for the variable Ai must be in the given finite-domain Di.
More precisely, if Di is an:

• Enumeration domain, List, then Ai is a ground term in the List.
• Interval domain, Min..Max, then Ai is a ground term between Min and Max.

These specifications constitute what we call unary constraints. Finite-domain con-
straints can also be composed of binary constraints over pairs of variables that define
the dependency relationship between them. For instance, the finite-domain constraint
imposed on the price can be specified as an equation in the form of
price={1000+((monitor_size-14)*100)+((disk_space-40)*10)}, which constitutes two
parts; a fixed base price of 1000, and a non-fixed component that depends on the
available finite-domain values of the attributes needed to configure a computer.

Accommodating Distributed Finite-Domain Constraint Solving. In providing dia-
logue coordination for distributed and mutual finite-domain constraint solving, [7] de-
scribes on how the basic clause expansion mechanism of LCC has been extended to
preserve the ranges of restricted finite-domain on negotiated variables. This allows
agents to restrict rather than simply instantiate these constraints when interacting, thus
allowing a less rigid interaction. For instance, applying this to our example of mutual
finite-domain constraints in expressions 2 and 4, if the range of values permitted for A
by available(A) is {32,64,128}, while the range of values permitted for A by accept-
able(A) is {64,128,256}, then were we to use finite-domain constraint solver, a con-
straint space of {64,128} is obtained – a range that would be attached to the variable
returned in the accept(A) message.

The finite-domain constraints on variables, mutually defined by the distinct
agents are entirely separate and private from each other. So, when a constraint is ap-
plied by one agent, the constraint will not propagate to the other agents unless carried
by the protocol. This requires one addition to the protocol structure of section 2.2: a
list of variable restrictions, V, for any variable that has been instantiated and con-
strained in the protocol. Figure 2 provides a general overview on the basic architec-
ture and process flow on how this is accomplished.

As described in section 2.2, the components of the receipt message include a pro-
tocol P, of the form P:=<T,F,K>. Given this, set V contains the current restriction for
each variable in the expanded clause of T. Once decoded, the set V is posted to the
constraint store of a finite-domain constraint solver, and the rest of the message will
be forwarded to the protocol expansion mechanism to determine the agent’s next
move in the dialogue. The expansion of an agent’s role in a particular round of dia-
logue interaction requires the relevant variable and its intra-agent finite-domain con-
straint, associated with the interaction, to be instantiated with values from the agent’s
knowledge base and posted to the constraint store of the finite-domain constraint
solver. Successful expansion of the agent’s part in the interaction protocol is deter-
mined on whether the newly added constraint is consistent with existing set V; the
process computationally performed by the finite-domain constraint solver. This proc-
ess allows the distinct finite-domain constraints, mutually defined by the interacting
agents on a particular variable contained within the interaction protocol, to converge
to a new finite-domain range. Once completed, an updated state of the interaction pro-
tocol, a new message content, and updated set, V’ are together encoded before being
passed to the message passing media to be retrieved by its intended recipient.

Message
passing media

(e.g. Linda server)

Message
encoder/decoder

Finite
domain

constraint
solver

Variable
restriction

list, V

Updated
variable

restriction
list, V’

Protocol
expanderNew

message

Rest of
message

Agent

Knowledge
base/

decision
making

Message received LCC interaction protocol layer

Posting of new
finite-domain constraint

in relation to protocol’s expansion
and instantiation of variable

contained in the protocol

M
es

sa
ge

se

nt

START

END

iiii-
Fig. 2. Basic architecture of LCC framework for distributed constraint solving interaction

3.2 Source of AIP Brittleness

As described earlier, for a multi-agent interaction involving a distributed constraint
solving process over a set of variables, an expansion to the interaction protocol (i.e.
moving to the successive states of the protocol) is only possible if the interacting
agents can mutually satisfy their part of the finite-domain constraints imposed on
variables contained within the protocol. Given the interaction protocol of expressions
1-4 for instance, the dialogue will continue in accordance to the defined interaction
protocol as long as the ranges of attribute values offered by the negotiating vendor
converge with those required by the negotiating customer. To illustrate this point, as-
sume that the current attribute value being negotiated between these two agents is the
disk space size of the computer, and the following statements describe the knowledge
and finite-domain constraints private to the customer and vendor agents respectively:

Vendor: available(disk_space(D)) D in 20..100 Gb
Customer: acceptable(disk_space(D)) D in 40..∞ Gb

Upon negotiating these private finite-domain constraints via the defined protocol,
the disk space attribute value that meets the vendor offer, and also the customer re-
quirement will be in the mutual range of 40 Gb ≤ disk_space(D) ≤ 100 Gb. However,
as mentioned in [12], in the process of proposal exchange involving bilateral negotia-
tions between two agents (i.e. customer and vendor), each agent has a private border
proposal, which is the maximum (or minimum) limit that must be respected in reach-
ing a deal. The intersection between the agents’ border proposal defines what we call
the deal range. If the deal range is empty, then the deal is impossible. This will lead
to a failure in the product configuration process and break the prescribed protocol.

3.3 Constraint Relaxation to Reduce AIP Brittleness

Our approach to address this brittleness problem requires an agent to be able to adapt
to the constraints on variables established by the other agents, achieved through con-
straint relaxation. Form of constraints relaxation considered in this work is focused on
the revision of the initially assigned finite-domain intra-agent constraints by a single
or many agents to ensure that a deal range is obtained.

Constraints relaxation is only possible if the agents participating in the interaction
are cognitively and socially flexible to the degree they can handle (i.e. identify and
fully or partially satisfy) the constraints that they are confronted with. As further em-
phasised in [13], a requirement for applying efficient mechanisms for (joint) con-
straint relaxation and propagation is that agents are able to reason about their con-
straints and involve other agents in this reasoning process. Thus, for the constraint
relaxation process to be accomplished, the engineering requirements expected from
the interacting agents include cognitive and social requirements.

The cognitive requirement concerns with the agent’s internal reasoning capability
that enables it to dynamically modify and redefine its own set of predefined con-
straints, an inherent functionality expected of agents involved in distributed constraint
solving processes. The issue of the best computational approach or constraint relaxa-
tion strategy that an agent might employ to reach to this decision is still open, and its

discussion extends beyond the scope of this paper. However, a generally accepted no-
tion is that the decision taken should be to the agent’s own advantage, leading to the
realisation of the eventual goal of the agent (i.e. interacting agents reaching an agree-
ment in solving a particular MAP). The second requirement (i.e. social requirement)
obligates the participating agents to communicate and coordinate the constraint re-
laxation process with the other agents. This process, expected to be handled at the
protocol level, is the focus of this work, and will be demonstrated within the LCC
framework.

The application of constraint relaxation approach in MAS is not new, as it has been
used to resolve conflicting constraints between agents [14]. Particularly within the
area of multi-agent negotiation, research has been conducted that modelled negotia-
tion as a constraint-relaxation process. The agents are self-interested in the sense that
they would like to achieve an agreement that gives them the highest utility, but are
also cooperative in the sense that they are willing to accept the lower offer in order to
facilitate reaching an agreement. The agents communicate their constraints through
proposals and counterproposals, achieved via a centralised agent who acts as a media-
tor to resolve any conflicting constraints established by the distinct agents. The cen-
tral-agent approach is usually adopted in handling constraints, which involves multi-
lateral interaction patterns (i.e. one-to-many or many-to-many) of distributed agents.
The use of a central agent, though effective, has been associated with a number of
drawbacks that include invasion of privacy [15] and the bottleneck problem [7].

As described in [16], the fundamental constraint-related issues that need to be con-
sidered when applying a constraint relaxation approach include:

i. How to relax a constraint?
ii. Which constraint to relax?

iii. When to relax – when exactly during computation that we have to relax the
constraint?

By extending the constraint relaxation approach to the AIP domain, agent-related
and protocol-related issues that need to be taken into account include:

iv. Who or which agent should be asked to relax a particular constraint?
v. How the agents coordinate their communicative acts when engaging in the

constraint relaxation process?

However, not all of these issues can be tackled at the protocol level. Issue like (i),
which involves customised and private constraint relaxation strategies, is expected to
be internalised within the agent and individually defined by the engineer of the re-
spective agent. The proposed constraint relaxation module that addresses the rest of
the issue is illustrated in details in section 4.

4 The Constraint Relaxation Module

The module is composed of three fundamental components, namely:

i. Extractor
This component consists of two important processes. First, the constraint ex-

tractor is used to select the constraint(s) to be relaxed, and second, the recipient
details extractor, is used to find the agents authorised to relax these constraints.
The high level algorithms on how these are achieved are provided in section
4.1.

ii. Constraint relaxation processor
This component provides an interface with the agent internal reasoning layer,
which allows the list of constraints to be relaxed obtained from (i) to be for-
warded to this layer. Agent’s feedback in form of finite-domain values on re-
laxed constraints is propagated against the variable restriction list using a fi-
nite-domain constraint solver. This allows constraint consistency to be
checked.

iii. Interaction sub-protocol for constraint relaxation
This component allows the constraint relaxation process to be communicated
and coordinated at the inter-agent level, achieved via the following two proc-
esses; first, the composition of sub-protocol to coordinate the agents’ commu-
nicative acts when engaging in the constraint relaxation process, and second,
the insertion of this sub-protocol into the existing protocol that allows the
agents’ interactions on constraint relaxation to be accommodated. Further de-
tails of these two processes are given in section 4.2.

4.1 Extractor

Constraint extraction and decomposition. Within the LCC framework as described
in figure 2, an agent can proceed to the next interaction state if an instantiated finite-
domain constraint, Ci of a variable Ai, associated with a particular interaction cycle is
consistent with a set V containing the current finite-domain restriction for each vari-
able in the expanded interaction protocol. If this is not the case, then it will cause the
constraint relaxation module to be enacted. It begins with the process of identifying
the set of constraints to be relaxed, and the high-level algorithm for this is as follows:

i. Add Ai into List, a list uses to store a possible set of variables, in which the fi-
nite-domain constraint imposed on Ai requires relaxation

ii. If Ci is a finite-domain constraint expression composed of N-binary constraints
that define the dependency between Ai with N other instantiated variables (i.e.
A1..AN) of already completed protocol states, then, each Ak(1≤ k ≤ N) is added
to List consecutively, given that Ak is not already exist in List

An agent might employ any reasonable finite-domain constraint relaxation strategy
on this list of variables contained within List (i.e. removal of dependency, expansion
of interval values, etc.). Each successive relaxation, CRevised, on the content of List, is
propagated against set V using a finite-domain constraint solver to ensure that the re-
vised value is consistent with the values currently held in V. A successful constraint
relaxation will enable the agent to recommence expanding its interaction state, ensur-
ing the continuance of dialogue left out prior to the enactment of the constraint relaxa-
tion module.

Agent’s details extraction. In case an agent fails to relax its part of the mutual finite-
domain constraints associated with the set of variables contained in List, then the al-
ternative is to compose a message requesting the other agents to relax their part. In
finding the agent(s) authorised to relax these finite-domain constraints, it requires the
dialogue state component of the protocol, T, to be searched. T provides a record of
dialogue path followed by each of the interacting agents. Given T, the identifier of the
agent, XReceipt, mutually responsible for instantiating the finite-domain constraint for
the variable Ai is obtained. XReceipt is then passed to the constraint relaxation interac-
tion sub-protocol component to be used in a composition process, further described in
section 4.2. A constraint relaxation request message, attached within a revised inter-
action protocol for coordinating the agents’ communicative acts in performing the re-
laxation, is then forwarded to the LCC interaction layer.

4.2 Interaction Sub-Protocol for Constraint Relaxation

Composition of Sub-Protocol. The two roles determined to be important in the proc-
ess of constraint relaxation are constraint relaxation initiator, and constraint relaxation
responder. The constraint relaxation initiator is the one who initiates the constraint re-
laxation process, and is usually the one who fails to relax its part of the mutual finite-
domain constraints imposed on variables. An agent that assumes this role can send a
request for a constraint relaxation process to be performed by the other agents who
mutually constrain the variable that is failed to be satisfied.

The constraint relaxation responder, on the other hand, is the prospective recipient
of this request message. Upon receipt of a request message, the agent that assumes
this role might reply with a message informing either the request for the constraint re-
laxation has been performed or it failed to relax. A composed interaction sub-protocol
that defined the message passing behaviour of these two roles is instantiated with de-
tails (i.e. Ai, the variable in which its finite-domain constraint needs relaxation, and
XReceipt, the agents’ identifier(s) authorised to perform finite-domain constraint relaxa-
tion on Ai) obtained from the extractor component.

Revision of Agent’s Dialogue State. Once the composition and instantiation process
is complete, it is necessary to integrate this sub-protocol with the interaction protocol
currently followed by the agents. This requires the protocol’s dialogue state compo-
nent, T, of the agent(s) identified to be involved in the constraint relaxation interaction
to be inserted with the composed sub-protocol. In a way, this insertion of sub-protocol
can be seen as an interruption to the dialogue flow expected to be iterated among the
interacting agents. This allows the agent(s) in receipt of the revised protocol to par-
ticipate in the joint process of constraint interaction, as the sub-protocol defines on
how the recipient of a message that consists of constraint relaxation related contents,
can communicatively involve in the process.

A message, contained within a request for a constraint relaxation to be performed
on a list of variable(s), a revised protocol and a revised set V, containing the restric-
tion for each variable in the expanded interaction protocol, will be together encoded
before being passed to the message passing media to be retrieved by the intended re-
cipient. In order to properly interpret this message, the recipients need to ensure that
the constraint relaxation module is locally defined on their side.

5 Constraint Relaxation Application

The constraint relaxation module described in section 4 is implemented using SICStus
Prolog, and the finite-domain constraint solver available in SICStus Prolog (i.e.
clp(FD)) [17] is used to accommodate the handling of finite-domain constraints im-
posed on variables contained in the interaction protocol. The constraint solver restricts
variables to integer ranges. The expression V in L..U restricts variable V to be in the
range of L to U, where L and U are integers or the constant inf (for lower infinity) or
sup (for upper infinity). These ways of defining and restricting ranges of variables are
part of the specific constraint solver used in our example but different constraint
solvers could be used. The more important issue is to demonstrate how a constraint
relaxation performed locally by the vendor or customer agents is communicated con-
sistently (i.e. at the intra-agent and/or inter-agent levels) throughout an interaction be-
tween agents. The working of the mechanism is demonstrated below but first some fi-
nite-domain constraints are introduced for our example.

As an example of knowledge private to the customer agent, we define below the
range of acceptable values for attributes of the personal computer under discussion.
For instance, the customer would accept a disk space attribute value in between 40 or
above.

 need(pc)
sell(pc,s1)
acceptable(disk_space(D)) D in 40..sup
acceptable(monitor_size(M)) M in 17..sup
acceptable(price(_,_,P)) P in 1200..1600

(5)

The vendor agent’s local constraints are defined in the similar way to that of the
customer. We define the available ranges for the attributes needed to configure a
computer and relate these to its price via a simple equation (the aim being to demon-
strate the principle of relating constraints rather than to have an accurate pricing pol-
icy in this example).

attributes(pc,[disk_space(D),monitor_size(M), price(D,M,P)])
available(disk_space(D)) D in 40..80
available(monitor_size(M)) M in 14..21
available(price(D,M,P) P #= 1500+((M-14)*100)+((D-40)*10)

(6)

The finite-domain values for the price attribute of both agents are set to be conflict-
ing with each other to demonstrate the working of the constraint relaxation module.
The sequence of message passing that follows from the protocol expressions is shown
in table 1. The dialogue iterates between the customer, b1, and a vendor, s1. Each il-
locution shows: a numeric illocution identifier for reference (i.e. 1..n); the type of the
agent sending the message; the message itself; the type of agent to which the message
is sent; the variable restrictions applying to the message (the term r(V,C) relating a fi-
nite-domain constraint C to a variable V). The first illocution is the customer making
initial contact with the vendor. Illocution two to five then are offers of ranges for at-
tributes (disk_space, and monitor_size) each of which are accepted by the customer.
However, in illocution six, an offer of r(P,[[1800|2600]]) for the price attribute by the
vendor, is conflicting with the local finite-domain constraint of r(P,[[1200|1600]])

imposed by the customer, which causes a failure to expand the interaction protocol
received with the message. This enables the constraint relaxation module to be en-
acted.

In this example, the constraint relaxation module is evaluated against two different
scenarios. First, given the customer agent failure to reply with an offer(price(D,M,P))
message in accordance to the prescribed interaction protocol, we consider a situation
in which the customer agent is able or agreed to relax its part of the mutual finite-
domain constraint on price locally. For this case, our primary aim is to show on how
the intra-agent interactions involving components of the AIP layer, the constraint re-
laxation module, and agent’s internal reasoning module are accomplished and coordi-
nated, as illustrated in figure 3. Upon enactment of the constraint relaxation module,
the constraint relaxation processor component will be involved in a repetitive interac-
tion with the agent’s internal reasoning module in order to obtain a revised finite-
domain constraint on the price attribute given the failed unary constraint of P in
1200..1600, until a set of valid relaxation value is obtained or the agent decides
against relaxation. Assuming that the customer agent decides to revise its finite-
domain constraint to P in 1500..2000 (i.e. case 1 of figure 3), using a finite-domain
constraint solver, this value will be propagated against the current variable restrictions
set V=[r(P,[[1800|2600]]), r(M,[[17|21]]), r(D, [[40|80]])], causing a revision on its
content to V=[r(P,[[1800|2000]]), r(M,[[17|21]]), r(D, [[40|80]])]. The expansion of
the interaction protocol will recommence once this local constraint relaxation process
performed by the customer agent is complete.

Second, we consider a situation, in which the customer agent fails to relax its part
of the mutual finite-domain constraint, thus, requiring the involvement of the vendor
agent in the constraint relaxation process. For this case, our primary aim is to show
the enactment of the interaction sub-protocol for constraint relaxation component, to-
gether with the inter-agent interaction aspect that takes place during the relaxation
process, and how these components are managed and coordinated. Assuming that the
customer agent fails to relax its part of the mutual finite-domain constraint imposed
on the price attribute (i.e. case 2 of figure 3), then the interaction sub-protocol for
constraint relaxation component will be enacted. A message, contained within a re-
quest for the vendor agent to relax its part of the mutual finite-domain constraint im-
posed on the price attribute, will be composed and sent to the vendor agent, together
with the revised interaction protocol, contained within a sub-protocol specifying the
roles, and message passing behaviour expected to coordinate the constraint relaxation
process.

The sequence of message passing that follows from an interaction between the
constraint relaxation initiator (i.e. customer) and the constraint relaxation responder
(i.e. vendor) concerning a constraint relaxation of the price attribute is shown in illo-
cution 7 and 8 of table 2. In relaxing its part of the finite-domain constraint, the ven-
dor, in the role of constraint relaxation responder, will undergo a similar intra-agent
interactions process as described in figure 3. Since this relaxation involves a set of bi-
nary constraints, there exists a number of constraint relaxation strategies that can be
employed by the customer agent (e.g. remove the dependency of price attribute on the
other attributes). Assuming that the vendor agent agrees to relax its fixed base price
component of the price attribute from 1500 to 1000, then a new finite-domain con-
straint of r(P,[[1300|2100]]) is obtained. A message confirming that a relaxation has

been performed, as described in illocution 8, will be sent together with the revised
variable restrictions set V of V=[r(P,[[1300|1600]]), r(M,[[17|21]]), r(D, [[40|80]])]. Upon
receipt of this message, the constraint relaxation message processor, local to the cus-
tomer agent will be enacted, and the received set V will be applied. Once this is com-
plete, that is the sub-protocol concerning the interaction protocol of constraint relaxa-
tion has been fully expanded, the agents resume their prior roles, and continue with
the interaction that has been left out.

Table 1. Sequence of message passing

No: 1
Sender: a(customer,b1)
Message: ask(buy(pc))
Recipient: a(vendor,s1)
Restrictions: []

No: 2
Sender:

Message: offer(disk_space(D))
Recipient: a(neg_cust(pc,s1,_),b1)
Restrictions: [r (D, [[40|80]])]

No: 3
Sender: a(neg_cust(pc,s1,[]),b1)
Message: accept(disk_space(D))
Recipient: a(neg_vend(pc,b1,_),s1)
Restrictions: [r (D, [[40|80]])]

No: 4
Sender:

Message: offer(monitor_size(M))
Recipient: a(neg_cust(pc,s1,_),b1)
Restrictions:[r (M, [[14|21]]),r (D, [[40|80]])]

No: 5
Sender:
a(neg_cust(pc,s1,[att(disk_space(D))]),b1)
Message: accept(monitor_size(M))
Recipient: a(neg_vend(pc,b1,_),s1)
Restrictions: [r (M, [[17|21]]),r (D, [[40|80]])]

No: 6
Sender: a(neg_vend(pc,b1,[price(D,M,P)]),s1)
Message: offer(price(D,M,P))
Recipient: a(neg_cust(pc,s1,_),b1)
Restrictions:[r (P, [[1800|2600]]),
r (M, [[17|21]]) ,r (D, [[40|80]])]

Constraint relaxation module

Case 1:
Valid relaxation performed on finite-
domain constraint imposed on price

OR
Case 2:

Failure to perform finite-domain
constraint relaxation of price attribute

Customer
agent

Constraint
relaxation
processor

Protocol
expander

succeed_relax
(revised V)

Interaction
sub-protocol
for constraint

relaxation

Finite-domain
constraint

solver

Message
encoder/
decoder

failed_relax
(price(D,M,P))

Perform relaxation on unary-
constraint or/and binary-
constraint associated with the
price attribute?

relaxation_request
(price(D,M,P))

Fig. 3. Intra-agent interactions of finite-domain constraint relaxation

)1s,
P)M,price(D,

ze(M)monitor_si
(D),disk_space

b1,pc,a(neg_vend
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

)1s,
P)M,price(D,

ze(M)monitor_si
b1,pc,a(neg_vend ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡

Table 2. Sequence of message passing involving constraint relaxation

No: 7
Sender: a(const_initiator(pc,s1,_),b1)
Message: relax_request(price(D, M, P))
Recipient: a(const_responder(pc,b1,_),s1)
Restrictions:V=[r(P,[[1200|1600]]),
r(M,[[17|21]]), r(D, [[40|80]])]

No: 8
Sender: a(const_responder(pc,b1,_),s1)
Message:relax_performed(price(D, M ,P))
Recipient: a(const_initiator(pc,s1,_),b1)
Restrictions:V=[r(P,[[1300|1600]]),
r(M,[[17|21]]), r(D, [[40|80]])]

6 Discussion and Future Work

Induced backtracking is another approach that has been applied to address constraint
failures in distributed dialogue protocols [18]. It is considered limited because in
multi-agent interactions we cannot assume that agents having received messages are
able to backtrack, since they may be implemented in a language that does not support
backtracking [7]. In addition, the work reported in [18] does not specifically focus on
finite-domain constraints. Given that a failed constraint is dependent on a number of
other constraints that have been satisfied by the interacting agents, then choosing an
acceptable backtracking point within the expanded dialogue states to accommodate
the agents’ constraint relaxation strategies, might be a complicated matter.

On the other hand, the approach reported in this paper provides a mechanism that
allows an interaction sub-protocol on constraint relaxation to be initiated and incorpo-
rated with the currently executed interaction protocol. This is considered an improved
and extended version of our previous work involving constraint relaxation as reported
in [9]. In our previous work, the communicative acts for the joint process of constraint
relaxation are predefined in the interaction protocol deployed to each of the agents
participating in the interaction. This requires the agents’ roles in the constraint relaxa-
tion interaction to be determined in advance, as such, it does not provide the neces-
sary support for a flexible constraint relaxation strategy to be incorporated. In addi-
tion, a number of processes which could be accomplished at the protocol layer are
assumed to be internalised within the interacting agents.

At this stage, our constraint relaxation module can only accommodate a minimum
interaction requirement, in which the agents can propose or request for a constraint re-
laxation to be performed, and respond to such requests by either acceptance or rejec-
tion. However, with a simple accept or reject reply, the constraint relaxation initiator
has no idea in which direction of search space should it move in order to find a con-
verging mutual finite-domain constraint range. This could be time consuming and in-
efficient, and might also lead to an infinite loop. Therefore, an ideal remedy requires
the agents in receipt of a constraint relaxation request to provide more information in
their response to help direct the initiator. This is possible if the agents’ responses to a
request could include critiques or counter-proposals [19], which enable the agents to
exercise a more flexible constraint relaxation strategy. To accommodate this type of
flexible interaction at the protocol level, the interaction protocol currently executed by
the interacting agents needs to undergo a dynamic revision process, controlled within
a certain set of parameters. The described extension is one of the important focuses of
our further research work.

References
[1] M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni, "Specification and

verification of agent interaction using social integrity constraints," Theoretical Com-
puter Science, vol. 85, pp. 23, 2004.

[2] J. Odell, H. V. D. Parunak, and M. Fleischer, "Modeling agents and their environ-
ment: the communication environment," Journal of Object Technology, vol. 2, pp.
39-52, May-June 2003.

[3] B. Chen and S. Sadaoui, "A generic formal framework for multi-agent interaction
protocols," University of Regina, Canada, Technical report TR 2003-05, 2003.

[4] M. Estava, J. A. Rodriguez, C. Sierra, P. Garcia, and J. L. Arcos, "On the formal
specifications of electronic institutions," Lecture Notes in Artificial Intelligence, pp.
126-147, 2001.

[5] M. Greaves, M. Holmback, and J. Bradshaw, "What is a conversation policy?," in Is-
sues in Agent Communication, F. Dignum and F. Greaves, Eds.: Springer-Verlag,
1990, pp. 118-131.

[6] C. D. Walton and D. Robertson, "Flexible multi-agent protocols," University of Ed-
inburgh, Technical report EDI-INF-RR-0164, 2002.

[7] D. Robertson, "Multi-agent coordination as distributed logic programming," pre-
sented at 20th International Conference on Logic Programming, Saint-Malo, France,
Sept. 6-10, 2004.

[8] D. Robertson, "A lightweight coordination calculus for agent social norms," pre-
sented at Declarative Agent Languages and Technologies (AAMAS), New York,
USA, 2004.

[9] F. Hassan and D. Robertson, "Constraint relaxation to reduce brittleness of distrib-
uted agent protocols," presented at Coordination in Emergent Agent Societies Work-
shop (CEAS 2004), held in conjunction with the 16th European Conference on Arti-
ficial Intelligence (ECAI' 04), Valencia, Spain, 2004.

[10] P. J. Modi and M. Velose, "Bumping strategies for the multiagent agreement prob-
lem," presented at Fourth International Joint Conference on Autonomous Agents and
Multiagent Systems, Utrecht,Netherland, July,2005.

[11] T. Fruhwirth, "Theory and practice of constraint handling rules," The Journal of
Logic Programming, vol. 37, pp. 95-137, 1998.

[12] G. E. d. Paula, F. S. Ramos, and G. L. Ramalho, "Bilateral negotiation model for
agent-mediated electronic commerce," presented at Agent-Mediated Electronic
Commerce (AMEC 2000) Workshop, Barcelona, Spain, 2000.

[13] G. Weib, "Congnition, sociability, and constraints," in Balancing Reactivity and So-
cial Deliberation in Multi-Agent Systems: From RoboCup to Real-World Applica-
tions, vol. 2103 (LNAI), M. Hannebauer, J. Wendler, and E. Pagello, Eds.: Springer-
Verlag Heidelberg, 2001.

[14] K. P. Sycara, "Multiagent systems," in AI Magazine, vol. 19, 1998, pp. 79-92.
[15] D. Pruitt, Negotiation behaviour. New York: Academic Press, 1981.
[16] N. Jussien and P. Boizumault, "Implementing constraint relaxation over finite do-

mains using assumption-based truth maintenance systems," in Lecture Notes in Com-
puter Science (LNCS), vol. 1106, M. Jumper, E. U. Freuder, and M. J. Maher, Eds.:
Springer, 1996, pp. 265-280.

[17] SICStus Prolog User's Manual. Stockholm: Swedish Institute of Computer Science
(http://www.sics.se/sicstus.html), 1999.

[18] N. Z. Osman, "Addressing constraint failures in distributed dialogue protocols," Uni-
versity of Edinburgh, MSc. Thesis 2003.

[19] S. Parsons, C. Sierra, and N. R. Jennings, "Agents that reason and negotiate by argu-
ing," Journal of Logic and Computation, vol. 8, pp. 261-292, June 1998.

