
 1

Constraint Relaxation to Reduce Brittleness of

Distributed Agent Protocols

M. Fadzil Hassan1 and David Robertson2

Abstract. Incompatible goals among multiple agents
working on domains involving finite constraints can be a
source of conflict. This conflict, in the form of
incompatible constraints established locally by the agents
and imposed on the negotiated variables, may break the
dialogue between these agents even though they could, in
principle, reach an agreement. A common means of
coordinating multi-agent systems is by using protocols to
which are attached constraints on interaction; but
protocols are brittle, in the sense that the constraints they
contain must either succeed or fail, and if they fail the
entire protocol may fail. We apply a constraint relaxation
technique originally for automated negotiation using a
distributed protocol language called the Lightweight
Coordination Calculus (LCC), in order to overcome a
class of conflicts, making protocols less brittle. This
approach is illustrated in a scenario involving the
ordering and configuration of a computer between the
customer and vendor agents.

1 INTRODUCTION
One of the critical aspects of multi-agent systems (MAS)
concerns with the coordination protocol between the
agents involved in solving some prescribed tasks. To
date, a number of frameworks have been proposed to
address this aspect, for instance Electronic Institutions
(EI) [1] and Conversation Policy (CP) [2]. However,
there are a number of shortcomings within these
approaches, as they are based on static state-based
diagrams and require a centralised mechanism to manage
the coordination between agents [3].

LCC, an agent protocol language, has been
proposed to overcome this limitation [4]. This language,
which is derived from process calculus, relaxes the static
specification of agent protocols as state-based diagrams
and allows protocols to be defined and disseminated in a
flexible manner during agent interaction.

1 Centre for Intelligent Systems and their Applications (CISA),
School of Informatics, University of Edinburgh, Appleton
Tower, Room 3.07, 11 Crichton Street, Edinburgh EH8 9LE,
UK. Tel: (0) 131 650 2749, E-mail: s0090693@sms.ed.ac.uk
2 CISA, Tel: (0) 131 650 2709, E-mail: dr@inf.ed.ac.uk

The protocol language has been applied to several
domains, including a short but (by current standards)
complex scenario that deals with the purchasing and
configuration of a computer between the customer and
vendor agents. The scenario, borrowed from [5], is as
follows:

An internet-based agent acting on behalf of a
customer wants to buy a computer but doesn’t know
how to interact with other agents to achieve this, so
it contacts a service broker. The broker supplies the
customer agent with the necessary interaction
information. The customer agent then has a dialogue
with the given computer vendor in which the
various configuration options and pricing constraints
are reconciled before a purchase is finally made.

Within this given scenario, the agents’ local

goals, expressed in the form of finite constraints over the
negotiated variables (e.g. memory_space(40..50),
price(800..1100), monitor_size(15..21), etc.), may cause a
conflict if no compatibility is found between the
corresponding variables values set by the negotiated
agents. This conflict will lead to a failure in the
reconciliation process and break the prescribed protocol.

Therefore, to overcome this conflict, this paper
proposes a constraint relaxation technique, described in
[6], using the LCC protocol language. It is expected that
through the proposed work, it will reduce the brittleness
of the agent protocol, especially when applied to the
domains involving finite constraint on variables.

The remainder of this section provides
background to the related work involving agent
coordination for constraint-based problems, an overview
on the LCC interaction framework, and the approach
used for expansion of the protocol clauses (the means by
which LCC protocols are enacted). Section 2 describes
the use of LCC interaction protocol for a computer
ordering and configuration scenario, demonstrating the
brittleness problem faced by the current work. In section
3, the constraint relaxation technique to reduce brittleness
of the protocol is described and implemented. Lastly,
section 4 will provide an example and the final section
will discuss further work and potential shortcomings of
this approach.

 2

1.1 MAS coordination and constraint-
based problems

MAS have been used to solve constraint-based problems
in various domains, which include distributed meeting
scheduling systems [7], organ transplant coordination for
a hospital [8], and distributed timetabling systems [9]. In
many of these works, a central agent that facilitates the
sending and receiving of messages performs coordination
among the distributed agents to reach a common goal. It
is through this central agent that the process of obtaining
the relevant variables, their associated domains and the
required constraints from the various distinct agents is
performed. A solution, globally consistent with the local
goals of each of the involved agents, is then generated if
there exists one.

Incompatible local goals and constraints among
the distributed agents may cause conflicts and failure to
reach a consistent solution. Rather than terminating this
whole process prematurely, it is common to resolve these
conflicts using various conflict resolution strategies
described in [10], usually mediated by the central agent.
The use of a central agent for coordination purpose to
resolve this conflict might be acceptable if confidentiality
is not the main concern; so it is acceptable for agents to
reveal their internal goals to the third parties. However, in
some domains (e.g. buyer-seller negotiation), it is not
practical for this private information to be completely
revealed, as it might jeopardise the agents’ individual
strategies for obtaining an optimal outcome from the
interaction process. Given this consideration, it is
essential for the conflict resolution approach to be
managed directly by the involved agents themselves,
without any third-party mediator. Fundamentally, the use

of central agent undermines the key principle of agency –
that each agent can operate autonomously – since the use
of central agent can be considered have removed part of
that autonomy.

1.2 Overview of LCC

LCC borrows the notion of role from agent systems that
enforce social norms but reinterprets this in a process
calculus. The syntax of the protocol language is shown in
Figure 1. Social norms in LCC are expressed as message-
passing behaviours associated with roles. ‘⇒’ and ‘⇐’
mark messages being sent or received respectively. On
the left-hand side of the double arrow is the message and
on the right-hand side is the other agent involved in the
interaction. The most basic behaviours are to send or
receive messages, and more complex ones are
constructed using the connectives then, or and par for
sequence, choice and parallelisation respectively. A set of
such behavioural clauses specifies the message passing
behaviour expected of the social norm, and can be
referred to as the interaction framework.
 The LCC language ensures coherence
interaction between agents by imposing constraints
relating to the messages they send and receive in their
chosen roles. Constraints are marked by ‘ ’, which
indicate the requirements or consequences for an agent
on the performatives or roles available to it. The clauses
of the protocol are arranged so that, although the
constraints on each role are independent of others, the
ensemble of clauses operates to give the desired overall
behaviour. Further details of the LCC interaction
framework are provided in [3-5].

Figure 1. Syntax of LCC Interaction Framework

Framework := {Clause,…}

Clause := Agent::Def
Agent := a(Type,Id)
Def := Agent | Message | Def then Def | Def or Def | Def par Def |

mmmnull C
Message := M ⇒ Agent | M ⇒ Agent C | M ⇐ Agent | C M ⇐ Agent

C := Term | C ∧ C | C ∨ C
Type := Term

M := Term

Where null denotes an event, which does not involve message passing; Term is a structured term in Prolog syntax and
Id is either a variable or a unique identifier for the agent.

 3

1.3 Using LCC protocol for coordination

An agent is capable of conforming to a LCC protocol if it
is supplied with a way of unpacking any protocol it
receives; finding the next moves that it is permitted to
take; and updating the state of the protocol to describe the
new state of the dialogue. There are many ways of doing
this but perhaps the most elegant way is by applying
rewrite rules to expand the dialogue state. This works as
follows:

• An agent receives from some other agent a message

with an attached protocol, P, of the form protocol
(S, F, K), where S is the dialogue state; F is the
dialogue framework (a set of dialogue clauses); and
K is a set of axioms defining common knowledge
assumed among the agents. The message is added to
the set of messages currently under consideration by
the agent – giving the message set Mi.

• The agent extracts from P the dialogue clause, Ci,
determining its part of the dialogue.

• The rewrite rules of Figure 2 are applied to give an
expansion of Ci in terms of protocol P in response to
the set of received messages, Mi, producing: a new
dialogue clause Cn; an output message set On and
remaining unprocessed messages Mn (a subset of
Mi). These are produced by applying the protocol
rewrite rules above exhaustively to produce the
sequence:

Ci

 Mi, Mi+1, P, Oi → Ci+1, Ci+1
Mi+1, Mi+2, P, Oi+1 → Ci+2,

 … , Cn-1 Mn-1, Mn, P, On → Cn

• The agent’s original clause, Ci, is then replaced in P
by Cn to produce the new protocol, Pn.

• The agent can then send the messages in set On, each

accompanied by a copy of the new protocol Pn.

A::B Mi, Mo, P, O → A::E if B Mi, Mo, P, O → E

A1 or A2
Mi, Mo, P, O → E if ¬closed(A2) ∧ A1

Mi, Mo, P, O → E

A1 or A2
Mi, Mo, P, O → E if ¬closed(A1) ∧ A2

Mi, Mo, P, O → E

A1 then A2
Mi, Mo, P, O → E then A2 if A1

Mi, Mo, P, O → E

A1 then A2
Mi, Mo, P, O → A1 then E if closed(A1) ∧ A2

Mi, Mo, P, O → E

A1 par A2
Mi, Mo, P, O1 ∪ O2 → E1 par E2

 if A1
Mi, Mo, P, O1 → E1 ∧ A2

Mi, Mo, P, O2 → E2

C M ⇐ A Mi, Mi-{M ⇐ A}, P, ∅ → c(M ⇐ A) if (M ⇐ A) ∈ Mi ∧ satisfy(C)

M ⇒ A C Mi, Mo, P, {M ⇒ A} → c(M ⇒ A) if satisfied(C)

null C Mi, Mo, P, ∅ → c(null) if satisfied(C)

a(R,I) C Mi, Mo, P, ∅ → a(R,I)::B if clause(P,a(R,I)::B) ∧ satisfied(C)

A protocol term is decided to be closed, meaning that it has been covered by the preceeding interaction, as follows:

closed(c(X))
closed(A or B) closed(A) ∨ closed(B)
closed(A then B) closed(A) ∧ closed(B)
closed(A par B) closed(A) ∧ closed(B)
closed(X::D) closed(D)

satisfied(C) is true if C can be solved from the agent’s current state of knowledge.
satisfy(C) is true if the agent’s state of knowledge can be made such that C is satisfied.
clause(P,X) is true if clause X appears in the dialogue framework of P.
.

Figure 2. Rewrite rules for expansion of a protocol clause

 4

2 LCC PROTOCOL FOR FINITE-
CONSTRAINTS PROBLEM

The LCC-based protocol for the scenario given in section
1 can be conceptually described in Figure 3, and further
details can be found in [5]. There are two types of agent:
a vendor agent and a customer agent. No limit is placed
on the number of dialogues that may occur, although
each such dialogue will be constrained by the LCC
protocol.

Figure 3. Roles and interactions diagram

Assuming that the customer agent has already
obtained the necessary interaction information from a
service broker, the agent (in the role of customer) may
send a request to buy a computer to a selected vendor
agent, and can then (in the role of negotiating customer)
accept offers of each of the computer attributes values in
turn.

The interaction protocols between the vendor
and customer agents are defined by expressions 1-4, in
Figure 4. In expression 1, a customer, C, can send a
request to vendor, V, to buy an item, X that the customer
needs and believes the vendor sells. Then the customer
takes the role of negotiator with the vendor. Expression 2
consists of clauses to define a negotiating customer with
a set, S, of negotiated attributes of the desired item, X,
either receives an offer of a new attribute, A, and accepts
that (continuing in the negotiating role with A added to S)
or it receives a request to commit to the current set of
negotiated attributes and replies with a commitment to
the chosen attributes, F, from that set. In expression 3, a
vendor, V, receives a request from a customer, C, to buy
an item, X; then takes the role of negotiator with the
customer over the attribute set, S, that applies to that
item.

In expression 4, a negotiating vendor with a set,
S, of negotiable attributes of the desired item, X, either
takes the first element, A, of S and offers it to the
customer for acceptance (continuing then in its
negotiating role with the remaining attributes, T) or if S is
empty it asks the customer to commit to the attributes
they have discussed and receives confirmation of the
commitment. That they have agreed

a(customer,C)::
 ask(buy(X)) ⇒ a(vendor,V) need(X) ∧ sells(X,V) then
 a(neg_customer(X,V,[]),C) (1)
a(neg_customer(X,V,S),C)::
 offer(A) ⇐ a(neg_vendor(X,C,_),V) then
 accept(A) ⇒ a(neg_vendor(X,C,_),V) acceptable(A) then
 a(neg_customer(X,V,[att(A)|S]),C)
or
 ask(commit) ⇐ a(neg_vendor(X,C,_),V) then
 tell(commit(F)) ⇒ a(neg_vendor(X,C,_),V) choose(S,F) (2)
a(vendor,V)::
 ask(buy(X)) ⇐ a(customer,C) then
 a(neg_vendor(X,C,S),V) attributes(X,S) (3)
a(neg_vendor(X,C,S),V)::
 offer(A) ⇒ a(neg_customer(X,V,_),C) S=[A|T] ∧ available(A) then
 accept(A) ⇐ a(neg_customer(X,V,_),C) then
 a(neg_vendor(X,C,T),V)
or
 ask(commit) ⇒ a(neg_customer(X,V,_),C) S = [] then
 tell(commit(F)) ⇐ a(neg_customer(X,V,_),C) (4)

Figure 4. Interaction protocols between customer and vendor agents

 5

2.1 Brittleness of current protocol

An important aspect of the coordination protocols
between the vendor and customer agents defined in
expressions 1-4 concerns with the message passing of the
product attributes. The dialogue will continue in
accordance to this predefined protocol as long as there
exists a match between the ranges of attribute’s values
offered by the negotiating vendor with those required by
the negotiating customer. To illustrate this point, consider
the following example:

Assume that the current attribute value being negotiated
between these two agents is the disk space size of the
computer, and the following statements describe the
knowledge and constraints private to the customer and
vendor agents respectively:

Vendor: available(disk_space(D)) D in 20..100 Gb
Customer: acceptable(disk_space(D)) D in 40..∞ Gb

Upon negotiating these local constraints via the defined
protocol, the disk space attribute value that meets the
vendor offer, and also the customer requirement will be
in the following range:

40 Gb <= disk_space(D) <= 100 Gb

Therefore, depending on the agents’ strategies (e.g.
choosing the maximum value within the agreed range,
etc.), the disk space attribute will be assigned to a value
within this agreed range.

However, the following local constraints would break the
protocol:

Vendor: available(disk_space(D)) D in 40..100 Gb
Customer: acceptable(disk_space(D)) D in 20..30 Gb

In this particular situation, no match is found between the
customer’s required disk space value and the one that can
be offered by the vendor. Rather than terminating the
dialogue at this stage and wasting all the earlier effort of
establishing and maintaining the coordination between
agents, we might reduce brittleness by including a repair
mechanism within the protocol. This approach allows
customer and vendor to negotiate further by relaxing the
specified constraint on the value of the attribute.

3 CONSTRAINT RELAXATION

When a customer and vendor negotiate, it is rarely the
case that an offer is completely acceptable or completely
inconsistent with their respective constraints. Rather, an
offer usually satisfies the customer’s constraints more or
less. For example, an offer from the vendor consisting the
following attributes values:

• available(disk_space(D)) D in 40..80,
• available(monitor_size(M)) M in 15..18,

Can only partially satisfy the customer’s local constraints
of:

• acceptable (disk_space(D)) D in 60..80,
• acceptable(monitor_size(M)) M in 20..21,

Except that there exists a conflicting range of values for
the monitor size attribute. Resolving this conflict requires
the customer agent to relax its constraint on this
particular attribute. Depending on the internal decision
strategy employed by the customer agent, the conflicting
constraint might be relaxed or the rest of the negotiation
process might be abandoned entirely.

It is not the focus of this work to cover the
various computational approaches that a particular agent
might employ to reach to a decision. However, it is
assumed that the decision taken should be to the agent’s
own good, leading to the realisation of the eventual goal
of the agent. This paper provides only a mechanism if the
need arises, to provide an agent involved with the
coordinating mechanism a way to relax the conflicting
constraints. The focus of this work concerns on the
inclusion of clauses into the existing protocol that allow
the constraints relaxation to be coordinated and the
remainder of this section provides a discussion on this.

The conceptual view of the agents’ roles and
interaction described in Figure 3 is extended in Figure 4,
to include new roles that should be able to accommodate
the negotiating agents with the coordination protocol in
relaxing any conflicting constraints. The interaction
protocols between the customer and vendor agents in the
effort of relaxing the conflicting constraints are defined
by expressions 5-8, in Figure 5.

Expression 5, which is an extended version of
expression 2, includes clauses that allow the negotiating
customer to inform the negotiating vendor of an
unacceptable attribute value for A upon an occurrence of
a conflict between the value offered, and the local
constraints of the customer agent. Then, the customer
takes up a new role (i.e. constraints handling customer)
that is specially focused on handling these incompatible
constraints between the agents. In expression 6, which is
the extended version of expression 3, the vendor will take
up a new role (i.e. constraints handling vendor) upon
receiving the message of unacceptable constraint on the
values of attribute A from the customer.

In expression 7, in the role of constraint
handling customer, the request to relax the constraint on
the values of attribute A is either entertained (i.e. by
sending a message informing of a performed relaxation
on the conflicting constraint), or rejected (i.e. by sending
a message informing the vendor of a failure). The
customer will then resume its prior role as a negotiating
customer once the constraint relaxation is successfully
performed.

 6

 Us

Figure 4. Roles and interaction diagram for constraints relaxation

a(neg_customer(X,V,S),C)::

offer(A) ⇐ a(neg_vendor(X,C,_),V) then
accept(A) ⇒ a(neg_vendor(X,C,_),V) acceptable(A) then

a(neg_customer(X,V,[att(A)|S]),C)
or
inform(unacceptable(A)) ⇒ a(neg_vendor(X,C,_),V) ¬ acceptable(A) then

a(constraint_hand_customer(att(A),C))

or
ask(commit) ⇐ a(neg_vendor(X,C,_),V) then
tell(commit(F)) ⇒ a(neg_vendor(X,C,_),V) choose(S,F) (5)

a(neg_vendor(X,C,S),V)::
offer(A) ⇒ a(neg_customer(X,V,_),C) S=[A|T] ∧ available(A) then

accept(A) ⇐ a(neg_customer(X,V,_),C) then
a(neg_vendor(X,C,T),V)

or
inform(unacceptable(A) ⇐ a(neg_customer(X,V,_),C) then

a(constraint_hand_vendor(A,V))
or

ask(commit) ⇒ a(neg_customer(X,V,_),C) S = [] then
tell(commit(F)) ⇐ a(neg_customer(X,V,_),C) (6)

a(constraint_hand_customer(A,C))::
request(relax_constraint(A)) ⇐ a(constraint_hand_vendor(A,V)) then

inform(relaxed(A)) ⇒ a(constraint_hand_vendor(A,V)) relax(A) then
a(neg_customer(X,V,S),C)

or
inform(failure_relax(A)) ⇒ a(constraint_hand_vendor(A,V)) ¬ relax(A) (7)

a(constraint_hand_vendor(A,V))::
request(relax_constraint(A)) ⇒ a(constraint_hand_customer(A,C)) then

inform(performed_relax(A)) ⇐ a(constraint_hand_customer(A,C)) then
a(neg_vendor(X,C,S,V))

or
inform(failure_relax(A)) ⇐ a(constraint_hand_customer(A,C)) (8)

Figure 5. Interaction protocol with constraint relaxation

 7

In expression 8, the vendor will send a request to the

customer to relax its local constraint on the values of
attribute A, and expected afterwards for the customer to
reply with a message stating that either the request has
been entertained or turned down. If a successful
constraint relaxation message is received, then the vendor
will resume its prior role as a negotiating vendor,
continuing with the dialogue that has been left out when
the conflict on the agents’ local constraint that caused
deadlock to the interaction occurred.

4 EXAMPLE

In this section, the application of the new modified
protocol clauses defined in expressions 5-8, to the
scenario given in section 1 is demonstrated.
 As an example of knowledge private to the
customer agent, we define below the range of acceptable
values for attributes of the personal computer under
discussion. For instance, the customer would accept disk
space of 40 or above. It is also defined how the specific
values for attributes are chosen by the customer agent
from the ranges agreed via earlier dialogue with the
vendor: the maximum from the range being taken for
every attribute.

need(pc)
sell(pc,s1)
acceptable(disk_space(D)) D in 40..60
acceptable(monitor_size(M)) M in 19..21
choose([att(Att)|T],[att(AttI)|R]) choice(Att,AttI)

∧ choose(T,R)
choose([],[])
choice(disk_space(D),disk_space(Dc)) fd_max(D,Dc)
choice(monitor_size(M),monitor_size(Mc))

fd_max(M,Mc)
 (9)

The vendor agent’s local constraints are

defined in the similar way to that of the customer. The
available ranges of the attributes needed to configure a
computer are defined as the following:

attributes(pc,[disk_space(D),monitor_size(M)])
available(disk_space(D)) D in 20..100
available(monitor_size(M)) M in 14..17

(10)

The values for the monitor size attribute of both agents
are purposely set to be conflicting with each other, to test
how well the protocol clauses defined in 5-8 are able to
reduce the brittleness of the current interaction protocol
defined in 1-4. The sequence of message passing that
follows from the protocol expressions of 5-8 and the
constraints of expressions 9-10 is shown below. The
dialogue iterates between the customer, b1, and a vendor,
s1. Each illocution shows: a numeric illocution identifier

for reference (i.e. 1..n); the type of the agent sending the
message; the message itself; the type of agent to which
the message is sent; and the variable restrictions applying
to the message (the term r(V,C) relating a finite domain
constraint C to a variable V). The first illocution is the
customer making initial contact with the vendor.
Illocution two consists of an offer for the range of values
of the disk space attribute, which is accepted by the
customer in illocution three. However, in illocution four,
the offer for the range of values of the monitor size
attribute is conflicting with the local constraint of the
customer. Therefore, in illocution five, the customer will
send a message to the vendor informing about the failure
to comply with the offer. Illocutions six and seven consist
of the agents’ interactions to reconcile the conflicting
constraints.
 Assuming that the customer agent agreed to
relax its constraint, a message will be send to the vendor
informing about the performed relaxation in illocution
seven. In illocution eight and nine, the agents resume
their prior roles, and these illocutions consist of messages
concern with the dialogue temporarily left out to give
way to the conflict reconciliation. In illocution ten, the
vendor that has worked through all its relevant attributes,
asks for commitment from the customer. In reply, the
customer submitted a list of committed values for all
attributes.

Illocution identifier: 1
Sender: a(customer,b1)
Message: ask(buy(pc))
Recipient: a(vendor,s1)
Restrictions: []

Illocution identifier: 2
Sender: a(neg_vendor(pc,b1,[disk_space(D),
monitor_size(M)]),s1)
Message: offer(disk_space(D))
Recipient: a(neg_customer(pc,s1,_),b1)
Restrictions: [r(D, [20|100])]

Illocution identifier: 3
Sender: a(neg_customer(pc,s1,[]),b1)
Message: accept(disk_space(D))
Recipient: a(neg_vendor(pc,b1,_),s1)
Restrictions: [r(D, [40|60])]

Illocution identifier: 4
Sender: a(neg_vendor(pc,b1,[monitor_size(M)]),s1)
Message: offer(monitor_size(M))
Recipient: a(neg_customer(pc,s1,_),b1)
Restrictions: [r(M,[14|17]), r(D, [40|60])]

 8

Illocution identifier: 5
Sender: a(neg_customer(pc,s1,[att(disk_space(D))]),b1)
Message: inform(unacceptable(monitor_size(M)))
Recipient: a(neg_vendor(pc,b1,_),s1)
Restrictions: [r(M,[19|21]), r(D, [40|60])]

Illocution identifier: 6
Sender: a(constraint_hand_vendor(monitor_size(M)),s1)
Message: request(relax_constraint(monitor_size(M)))
Recipient:
a(constraint_hand_customer(monitor_size(M)),b1)
Restrictions: -

Illocution identifier: 7
Sender:
a(constraint_hand_customer(monitor_size(M)),b1)
Message: performed_relax(monitor-size(M))
Recipient:
a(constraint_hand_vendor(monitor_size(M)),s1)
Restrictions: -

Illocution identifier: 8
Sender: a(neg_vendor(pc,b1,[monitor_size(M)]),s1)
Message: offer(monitor_size(M))
Recipient: a(neg_customer(pc,s1,_),b1)
Restrictions: [r(M,[14|17]), r(D, [40|60])]

Illocution identifier: 9
Sender: a(neg_customer(pc,s1,[att(disk_space(D))]),b1)
Message: accept(monitor_size(M))
Recipient: a(neg_vendor(pc,b1,_),s1)
Restrictions: [r(M,[14|17]), r(D, [40|60])]

Illocution identifier: 10
Sender: a(neg_vendor(pc,b1,_),s1)
Message: ask(commit)
Recipient: a(neg_customer(pc,s1,_),b1)
Restrictions: []

Illocution identifier: 11
Sender: a(neg_customer(pc,s1,[att(monitor_size(M)),
att(disk_space(D))]),b1)
Message:
tell(commit([att(monitor_size(M)),att(disk_space(D))]))
Recipient: a(neg_customer(pc,s1,_),b1)
Restrictions: []

5 CONCLUSION AND

FUTURE DIRECTIONS

We have shown how brittleness of agent protocols, based
on our LCC language, can be reduced via a constraint
relaxation approach. A basic method for doing this was
presented. This is achieved through the inclusion of new
clauses into the existing protocol that allow the relaxation
to be coordinated when conflicting local constraints over
some negotiated variables cause the entire dialogue

protocol to break. As the behaviour of an agent in a given
role is determined by the appropriate LCC clauses, the
introduced relaxation clauses spell out explicitly on how
the agents should behave upon encountering a conflict
involving incompatible constraints on variables
established locally by these agents. An agent has the
option of assuming new roles that are specifically
designed to provide appropriate coordination measures
for the agents to relax any conflicting constraints with its
counterparts. This approach is later demonstrated in a
scenario involving the ordering and configuration of a
computer between the customer and vendor agents.
Through a simple example of a conflicting constraint of
attribute value between these agents, we explained how
the extended LCC protocol clauses are able to coordinate
the agents in resolving this conflict, and at the same time
make the protocol less brittle. Future work includes the
following:

• In this work, our emphasis is on extending the

protocol clauses to include the capability to
coordinate constraint relaxation among agents.
Another approach, expected to result in a similar
outcome, involves the integration of the relaxation
approach within the rewrite rules distributed to each
agent. Therefore, rather than focusing on
establishing specialised agents’ roles to deal with
this issue, another viable option provides the state
expansion mechanism (i.e. rewrite rules) with the
conflict resolution strategies (i.e. constraints
relaxation). This generic set of rewrite rules would
define how a protocol clause should be expanded in
case of a failure to satisfy any predefined constraint
imposed on negotiated variables.

• Our approach currently applies to finite domain

constraints, in which the constraints imposed on the
respective variables are independent of each other.
However, in the real scenario, it is usually the case
that the relaxation performed on a particular
variable’s constraints, has an immediate effect on
the others. Therefore, future work should include
extending this approach to enable the coordination
of constraint relaxation effort among agents with
multiple-dependent local constraints.

ACKNOWLEDGEMENT

We would like to thank the referees for their comments,
which helped improve this paper.

REFERENCES

[1] M. Estava, J. A. Rodriguez, C. Sierra, P.

Garcia, and J. L. Arcos, "On the formal
specifications of electronic institutions,"
Lecture Notes in Artificial Intelligence, pp.
126-147, 2001.

 9

[2] M. Greaves, M. Holmback, and J. Bradshaw,
"What is a conversation policy?," in Issues in
Agent Communication, F. Dignum and F.
Greaves, Eds.: Springer-Verlag, 1990, pp. 118-
131.

[3] C. Walton and D. Robertson, "Flexible multi-
agent protocols," University of Edinburgh,
Technical Report EDI-INF-RR-0164, 2002.

[4] D. Robertson, "Distributed agent protocols,"
University of Edinburgh, Technical Report
contact author for details(dr@inf.ed.ac.uk),
2003.

[5] D. Robertson, "Multi-agent coordination as
distributed logic programming," paper
submitted for the 20th International Conference
on Logic Programming, Saint-Malo, France,
Sept. 6-10, 2004.

[6] A. Sathi and M. S. Fox, "Constraint-directed
negotiation of resource allocation," Carnegie
Mellon University, Technical Report CMU-RI-
TR-89-12, 1989.

[7] S. Macho-Gonzales, M. Torrens, and B.
Faltings, "A multi-agent recommender system
for planning meetings," presented at Workshop
on Agent-based Recommender Systems
(WARS' 2000), Barcelona, Spain, 2000.

[8] A. Aldea, B. Lopez, A. Moreno, D. Riano, and
A. Valls, "A multi-agent system for organ
transplant coordination," presented at VIII
European Conference on AI in Medicine,
Carcais, Portugal, 2001.

[9] A. Meisels and E. Kaplansky, "Distributed
timetabling problems (DisTTP)," presented at
4th International Conference on Practice and
Theory of Automated Timetabling, Gent,
Belgium, 2002.

[10] T. H. Liu, A. Goel, C. E. Martin, and K. S.
Barber, "Classification and representation of
conflict in multi-agent systems," University of
Texas, Austin, Technical Report TR98-UT-
LIPS-AGENTS-01, 1998.

