
Using Multi-agent Platform For Pure Decentralised
Business Workflows

Li Guo, Dave Robertson and Yun-Heh Chen-Burger

CISA, Informatics, The University of Edinburgh, United Kingdom,
L.Guo@sms.ed.ac.uk, {dr,Jessicac }@inf.ed.ac.uk

Abstract. This paper describes the development of a distributed multi-agent
workflow enacting mechanism starting from a BPEL4WS[BPE03] specification.
Our work demonstrates that a multi-agent protocol (Lightweight Coordination
Calculus)[Rob04] can be derived from a BPEL4WS specification to enable pure
decentralised business workflows. The key difference between our work and other
existing multi-agent based systems is that our approach gives a pure distributed
architecture (has no centralised controller by any means) for deploying workflow
system in an open environment (internat). Moreover, with out approach, existing
workflow construct methodologies and business process models can be adopted
in as much as possible for the MAS development.

1 Introduction

Workflow processes within organisations often involve a large number of resources,
people and tools distributed over a wide geographic area. Workflow management sys-
tems are used for the purpose of automating the coordination of these diverse elements.
Thus, in order to suit the nature of the application environment and the technology
adapted, workflow applications are becoming distributed [GAK95][JGM98][Yan00].
Problems remain unsolved in current research of distributed workflow system due to
the centralised system architecture, i.e, bad performance, vulnerability to failures, poor
scalability, user restrictions, and unsatisfactory system openness. Moreover, as web ser-
vices and Grid services become the more popular as the reference model for business
resources, workflow can provide a powerful framework for composing individual ser-
vices into complete solutions. However, the client-server architecture is not suitable for
such areas where workflow technology is used in conjunction with services. This is be-
cause the client-server architecture is rather closed to facilitate external services (web
services) available on the internet. Thus, it is better to have an open architecture which
allows external services to be used.

Multiagent systems emerged as a new research area in the early 1990’s. The comput-
ing paradigm of multi-agent systems (MAS) has its origin in both distributed artificial
intelligence (DAI) and object-oriented distributed systems. Cooperation and coordina-
tion between agents is probably the most important feature of multi-agent systems.
Unlike those stand-alone agents, agents in a multi-agent system collaborate with each
other to achieve common goals. In other words, these agents share information, knowl-
edge, and tasks among themselves. The intelligence of MAS is not only reflected by

the expertise of individual agents but also exhibited by the emerged collective behavior
beyond individual agents. From a software engineering point of view, the MAS ap-
proach is also proven to be an effective way to develop large distributed systems. Since
agents are relatively independent pieces of software interacting with each other only
through message-based communication, system development, integration, and main-
tenance may in some cases become easier and less costly. For instance, it is easy to
add new agents into the agent system when needed. Also, the modification of legacy
applications can be kept to a minimum when they are to be brought into the system.
Aside from adding communication capabilities to a legacy application, nothing else is
required to change.

However, cooperation and coordination of agents in a MAS requires agents to be
able to understand each other and to communicate with each other to achieve their
common goals. This thus requires control mechanisms to ensure the agents in a MAS
always behave properly and effectively towards the final goal. A multi-agent interac-
tion protocol is used for this purpose, which defines both the sequences of the messages
that the agents must follow and the constraints associated with the messages. There are
many interaction protocol languages that have been defined for describing the proto-
cols, such as, FIPA-ACL[FIP00], KQML[FF94], LCC. However, when applying MAS
to the domain of business workflow management, an obvious problem is that it is al-
most impossible to get the overall view of the underlying business processes involved
in the workflow, since the protocol only specifies the message passing between dif-
ferent participants at implementation level. In the workflow management world, users
care about not only the automation of their work, but also the underlying processes’ ob-
jective understanding and analysis. For those analytical purposes, interaction protocol
based system specifications are not enough since they involve too much system level
information with high level business requirements hidden.

Business process modelling languages, in contrast, are well recognized for their
value in organizing and describing a complex, informal domain in a more precise semi-
formal structure that is intended for more objective understanding and analysis. Based
on these advantages, they have been wildly used in conventional workflow management
system and there are many mature techniques and tools which have been developed for
supporting the business process model based workflow system development. However,
such languages and tools are designed particularly for conventional workflow man-
agement architecture, they can not easily be adapted for new system architectures like
multi-agent systems. Therefore, when building MAS based workflow management sys-
tems, almost all the existing techniques and tools for supporting conventional workflow
management system’s development are wasted as well as the business process models
that are described by some formalised business process modelling languages, which
means huge amount of repeat work has to be done during the course of MAS devel-
opment. For example, verification and validation of formalised system specifications
has to be re-performed even when the existing business process models have been veri-
fied and validated for a conventional system architecture. In addition, business process
modelling languages used in workflow management systems sometimes are built with
specifical features, for instance, BPEL4WS[BPE03] is designed for web services based

distributed workflow system. By using such languages, new platform can be combined
with existing technologies.

In this paper, we discuss how to use business process models for pure decentralised
workflow system deployment on a MAS platform. In section 2, we carry a in depth
survey of some of existing MAS based workflow enacting approaches and discuss the
features and problems of them. The necessary background knowledge of the concrete
demonstrating languages both for describing business process models and MAS inter-
action protocols are given in section 3. Our MAS based decentralised workflow system
enacting mechanism is explained in detail in section 4 including: research problem anal-
ysis; a syntax based language mapping between BPEL4WS and LCC and most of the
important algorithms that we developed. Section 5 describes the design rationale of the
agents in our system. Conclusions of our work and some possible future work are given
in section 6.

2 Literature Review

2.1 Conventional Distributed Workflow Systems Based On a Client-server
Architecture

Many research efforts have been undertaken on the topic of workflow distribution in
conventional distributed workflow environment. The importance of associating work-
flow management with distribution has been emphasised, e.g., [PMG98][EP99][PHM99].
Also, some conceptual approaches and research prototypes have been proposed, which
aim at tackling these problems by making conventional distributed workflow manage-
ment systems more sophisticated.

ADEPT stands for Application Development based on Encapsulated pre-modelled
Process Templates [MRD03]. One important facet in the ADEPT project is to investi-
gate distributed workflow control in order to avoid overloading of the workflow servers
and of the communication network. To address these problems, ADEPT reduces the net-
work load by partitioning workflow definitions and by migrating the control of work-
flow instances from one server to another during run-time, i.e., a workflow instance
may no longer be controlled by only one workflow server. Furthermore, ADEPT sup-
ports both static and variable server assignments [BD99]. The former means appropri-
ate workflow servers are chosen for various partitions of a workflow definition. On the
contrary, variable server assignment allows for dynamic workflow server assignment at
run-time, which may improve the system performance significantly. As web services
become more and more popular and widely used as organisations’ interfaces, several
approaches have been proposed to deploy web service based distributed workflow sys-
tems in which web services are clients and a centralised workflow engine is used to
control the whole process that is carried between different web services. Two major
approaches for such system are business process execution language for web services
(BPEL4WS)[BPE03] and OWL-S[OWL01].

2.2 Pure Decentralised Workflow Approaches Based On Multi-agent/Peer-to-
peer

While conventional distributed workflow approaches fail to properly address the prob-
lems caused by the client-server architecture, the emergence of computing technologies
such as multi-agent and peer-to-peer have provided new platforms for process support
solutions. Some research effort, although limited, has been put into investigation of us-
ing these collaborative and decentralised frameworks to support workflow management
systems.

Little-JIL [AWS00], a language for programming the coordination of agents, is an
executable, high-level process programming language with a formal (yet graphical) syn-
tax and rigorously defined operational semantics. Little-JIL is based on two main hy-
potheses. The first is that the specification of coordination control structures is separable
from other process programming language issues. The second is that processes can be
executed by agents who know how to perform their tasks but can benefit from coordina-
tion support. Another ongoing p2p-based workflow project is conducted at Manchester
Metropolitan University. This project presents a p2p architecture for dynamic work-
flow management, which is based on concepts such as Web Workflow Peers Directory
(WWPD) and Web Workflow Peer (WWP)[FK]. The WWPD is a centralised feature
of the system, which provides a peer registration service and maintains a list of active
peers and their profiles. During the execution of workflow instances, Workflow process
administration is achieved by employing a notification mechanism. It is claimed that
such an approach is adaptive, easily scalable and flexible. SwinDeW[J.Y04] is a pure
peer-to-peer based system for workflow management. It removes both the centralised
data repository and the centralised workflow engine from the system. workflow partici-
pants are facilitated by automated peers which are able to communicate and collaborate
with one another directly to fulfil both build-time and run-time workflow functions.
With SwinDeW, performance bottlenecks in workflow systems are likely to be elimi-
nated whilst increased resilience to failure, enhanced scalability, better user support and
improved system openness are likely to be achieved. Its extended system SwinDeW-S
also supports web services based service composition based on OWL-S.

2.3 Discussion

The systems that are based on conventional distributed workflow architecture (client-
server) do add some distribution to workflow systems and bring benefits such as im-
proved performance, increased failure resiliency and enhanced scalability as they claimed.
However, these approaches mainly address distribution instead of decentralisation. A
common characteristic of these approaches is that they are still based upon and lim-
ited by the client-server architecture. Thus, these approaches either address the prob-
lems partly, or require complicated languages and/or complex algorithms. The remain-
ing centralised services like centralised process instantiation and work assignment also
make them relatively inflexible in some application domains. Moreover, the aspects of
user support and system openness are hardly ever considered. To summarise, the prob-
lems related to the centralised system architecture have not been and probably cannot be

addressed thoroughly when the whole workflow system is still based on a client-server
architecture.

The few attempts at combining multi-agent/p2p computing technology with work-
flow technology that we discuss have opened new ground in workflow, and in the pro-
cess support area in general. The distinguished features of multi-agent/p2p technology
make it suitable to address the problems related to the client-server architecture ulti-
mately. The potential of multi-agent based/p2p-based workflow, which offers significant
value to organisations, is revealed in existing approaches. However, it is evident from
the literature that research on implementing workflow in a multi-agent/p2p environment
is still at a very initial stage with many problems addressed insufficiently. Fakass work
on WWPD and WWP, only reports conceptual ideas about linking workflow. Other ap-
proaches, mainly focus on decentralised enactment of process instances at run-time in
order to remove potential performance bottlenecks, increase fault tolerance and offer
enhanced scalability. However, some issues which are essential to decentralised enact-
ment have not been specified clearly in these approaches. For example, it is not clear
in these approaches how the process definition data are managed so that decentralised
agents/peers are able to access task information at run-time. Subsequently, problems
of process instantiation are not addressed by these approaches. Issues such as dynamic
participants, work allocation and better user support also have not been addressed suf-
ficiently.

SwinDeW addresses most of the problems and offers a good platform for purely
decentralised workflow management. However, the problem for SwinDew is that it
builds everything from scratch. The language it uses is a process oriented language
with agents’ coordinating mechanisms embedded consequently. It blurs the business
level requirements and system level requirements. When new technologies come out,
their existing work can not be easily incorporated. It also ignores all the existing tech-
nologies that are used for supporting workflow management system development and
all the existing models that have been created for conventional workflow system, which
means repeating established work. Little-Jil falls into the same problem category as
SwinDeW.

3 Background Knowledge

To demonstrate our idea more clearly, we use two concrete languages from both busi-
ness workflow and MAS world, which are BPEL4WS LCC. In this section, necessary
background knowledge of them is explained.

3.1 Business Process Execution Language For Web Services

As introduced in literature review, the Business Process Execution Language for Web
Services (BPEL4WS) is an XML-based language for describing workflow in a dis-
tributed environment using web services. With the support from IBM and Microsoft,
it has become the de facto standard for workflow description. As an executable pro-
cess implementation language, the role of BPEL4WS is to define a new Web service
by composing a set of existing services. Thus, BPEL4WS is basically a language to

implement such a composition. The interface of the composite service is described as
a collection of WSDL portTypes, just like any other Web service. The composition
(called the process) indicates how the service interface fits into the overall execution of
the composition. Figure 1 illustrates this outer view of a BPEL4WS process.

A workflow described in BPEL4WS details the flow of control and any data depen-
dencies among a collection of web services being composed. When enacted, the com-
position itself becomes available as a meta-web service, eligible for inclusion in other
compositions. BPEL4WS requires that all web services be described with available
WSDL descriptions. Due to the industry’s increased focus on business process man-

Fig. 1. Basic BPEL4WS Syntax[JVS04]

agement and acceptance of BPEL4WS, vendors are producing new software tools for
workflow design, specification, and enactment. An example of one such tool is IBM’s
BPEL4WS Java Runtime (BPWS4J) (http://www.alphaworks.ibm.com/tech/bpws4j) plat-
form.

3.2 Lightweight Coordination Calculus

The lightweight Coordination Calculus(LCC) is a language for representing coordi-
nation between distributed agents. In a multi-agent system the speech acts conveying
information between agents are performed only by sending and receiving messages.
For example, suppose a dialogue allows an agent a(r1,a1) (r1 represents the role of the
agent and a1 is the ID of it) to send a message m1 to agent a(r2,a2) and agent a(r2,a2)
is expected to reply with message m2. Assuming each agent operates sequentially, the
sets of possible dialogue sequences we wish to allow for the two agents in the example
are as given below, where M1⇒ A1 denotes a message, M1, send to A1, and M2⇐

A2 denotes a message, M2, received from A2.

a(r1, a1) :: (m1 ⇒ a(r2, a2) then m2 ⇐ a(r2, a2))
a(r2, a2) :: (m1 ⇐ a(r1, a1) then m2 ⇒ a(r1, a1))

We refer to this definition of the message passing behavior of the dialogue as thedia-
logue framework. Its syntax is as follows, whereTermis a structured term andConstant
is constant symbol assumed to be unique when identifying each agent:

Framework ::= {Clause, ...}
Clause ::= Agent :: Def
Agent ::= a(Type, id)

Def ::= Agent|Message|Def then Def
|Def or Def |Def par Def

Message ::= M ⇒ Agent|M ⇒ Agent ← C
|M ⇐ Agent|M ⇐ Agent ← C

C ::= Term|C ∧ C|C ∨ C
type ::= Term

id ::= Constant
Constant ::= Term

A dialogue framework defines a space of possible dialogues determined by message
passing, so the protocols allow constraints to be specified on the circumstances under
which messages are sent or received. Two forms of constraints are permitted:

• Constraints under which message, M, is allowed to be sent to agent A. We write M
⇒ A ← C to attach a constraint C to output message.

• Constraints under which message, M, is allowed to be received by agent A. We
write M ⇐ A ← C to attach a constraint C to input message.

For the earlier example above, to constrain agent a(r1,a1) to send message m1 to
agent a(r2,a2) when condition c1 holds in a(r1,a1) we could write: m1⇒ a(r2,a2)←
c1.

An agent dialogue may also assumecommon knowledge, either as an inherent part of
the dialogue or generated by agents in the course of a dialogue. This knowledge could
be expressed in any form, as long as it can be understood by appropriate agents. We
recognise the importance of preserving a shared understanding of knowledge between
agents but cannot cover this issue in the current paper. As a dialogue protocol is shared
among a group of agents it is essential that each agent when presented with a message
from that protocol can retrieve thestateof the dialogue relevant to it and to that message
[Rob04].

Pulling all the above elements together, we describe a LCC dialogue protocol as the
term:

protocol(S, F,K)

Where S is the dialogue state; F is the dialogue framework(sets of dialogue clauses);
and K is a set of axioms defining common knowledge assumed among the agents.

4 From BPEL4WS Based Conventional Workflow System to LCC
Based Multi-agent Platform

4.1 Problem Analysis

If we consider the interactions described in a BPEL4WS process model from the multi-
agent point of view, it involves two sorts of agents: service providing agents (substi-
tutes/proxies of web services) that is in the role of< myRole >/< partnerRole >
and a coordinating agent (workflow server) that is defined implicitly in BPEL4WS. The
responsibility designated on the coordinating agent (workflow server) as analysed in
previous sections is too heavy, which is understandable because BPEL4WS was ini-
tially designed for the coordination of web services which only have very limited com-
puting capabilities. However, with software agents that have stronger computing capa-
bilities, the burden of the coordinating agent can be shared. If we can dispatch the tasks
that were performed by the workflow server (coordinating agent) to service providing
agent, the process models that are used in conventional workflow system can be used in
multi-agent based platform. Thus, to enable the MAS based distributed workflow sys-
tem, the first step is to decide what sorts of tasks are performed by workflow server and
how they can be dispatched to agents.

The most widely used technique for connecting two different specification based
systems is syntax based language mapping. After the two languages that are used for
describing the specifications in different system are mapped, any specification that is
written in one language can be translated into another automatically. The two system
can thus be ensured to be functionally equivalent to each other. This is illustrated in
figure 2:

Fig. 2. Connecting Workflow System and Multi-agent Via Language Mapping

A BPEL4WS process model defines four main concepts which are:

– Partners: define the roles that participate the interaction. It should be noticed, part-
ner notation in BPEL4WS defines the partner from the point of view of centralised
workflow server. All the participants that can interact with workflow server are de-
fined as partners (< partnerRole >) of it and workflow server is able to change
its role (< myRole >) in order to interact with different participants.

– Message passing activity: defines the message that takes place between two partic-
ipants. Such activities are:< receive >, < invoke > and< reply >.

– Computing activity: carries the real workflow computation. Such activities are:<
assign >, < terminate > etc.

– Structure activity: controls the execution order of message passing activities and
computing activities. Such activities are:< sequence >, < switch >, < while >
etc.

Except forPartners, execution of the other three sorts of activities are all carried
by the workflow server. When executing a message passing activity, what the workflow
server does is simply to pass and to forward the messages from/to participants (P1 and
P2). If P1 andP2 can communicate directly with each other, the workflow server is not
required at all. Structure activities define only the execution order of basic activities and
if the IP protocol languages such as LCC has the syntax of describing such information,
workflow server can also be removed since the control of time order is built in the pro-
tocol. When the protocol is passed between agents, such information is also transferred.
However, problems arise for computing activities. In a BPEL4WS specification based
workflow system, the computing activities must be executed by the workflow server and
such activities cannot be easily dispatched to service providing agents. The following
partial BPEL4WS model shows the problem. For simplicity, it is expressed using plain
text:

sequence
{

a = b,
P1 send M1 to P2,
c = d

}
Three roles are defined in the above chunk (P1, P2 explicitly and workflow server im-
plicitly). If we want to eliminate the role of the workflow server in the desired MAS, the
assign clauses,a = b andc = d have to be executed byP1 or P2 wholly or separately.
To decide which agent should execute what computing activity is a difficult task, at least
automatically, because the BPEL4WS specification is randomly defined. Therefore, in
order to translate a BPEL4WS specification is ambiguous on this point, the BPEL4WS
model must be specified following specific pattern, say, the computing activities must
be defined before at least one message passing activity so that the sender of the message
passing activity can perform the computing activities before sending a message out.

Given the above analysis, our aim is to ensure that all the tasks performed in a
BPEL4WS based conventional workflow system can be realised by a MAS if the BPEL4WS
specification can be completely/partially represented by LCC protocol. In the following
sub-sections, we discuss in detail of how to perform the syntax based language mapping
between BPEL4WS and LCC.

4.2 Simple Protocol Property Checking Language

Syntactically a BPEL4WS model is too far away from a LCC protocol for direct au-
tomatic translation in a single stage. Thus, we adopt a intermediate language, sim-
ple protocol property checking (SPPC)[LCB04], as a tool to help the translation from

BPEL4WS to LCC since syntactically it is close to BPEL4WS and LCC. Its syntaxes
is as follows:

SPPC Model ::= {Def, ...}
Def ::= Message|Def then Def |Def or Def |Def par Def |invoke(mid)

Message ::= msg(mid, pre(C), mb(Term), post(C), Agent, Agent)
pre(C) ::= Term|pre(C) ∧ pre(C)|pre(C) ∨ pre(C)

post(C) ::= Term|post(C) ∧ post(C)|post(C) ∨ post(C)
Agent ::= sender(a(Type, ID))|receiver(a(Type, ID))

C ::= Term
Condition ::= Term
mb(Term) ::= Term

Type ::= Term
mid ::= Constant
lid ::= Constant
ID ::= Constant

From the above SPPC syntax it can be seen that in SPPC a interaction that takes place
between two agents/participants are described in a singlemsg(...) in the similar way
that BPEL4WS does. But unlike BPEL4WS, SPPC only hasmsg(...) as its basic com-
ponents but doesn’t has individual clauses for representing computation units (com-
puting units are parts ofmsg(...)). All the computation units in SPPC are defined as
pre/post-conditions of message passing clauses, which is quite similar to the constraints
defined by LCC. Also SPPC uses the same operator that LCC uses to control the se-
quence ofmsg(...). Thus, using SPPC as a intermediation, performing language map-
ping between BPEL4WS and LCC is relatively easier. In the following sub-section, we
will explain in detail of how to perform language mappings from BPEL4WS to SPPC
and from SPPC to LCC one by one.

4.3 Performing language mapping from BPEL4WS to SPPC

Translation from partners defined in BPEL4WS to SPPC roles All the partici-
pants defined in< partnerLinks > in a BPEL4WS model are directly mapped to
the agents (sender and receiver) in SPPC no matter whether they are< myRole > or
< partnerRole >. An example BPEL4WS definition of participants is:

< partners >
< partner name = ”customer”

serviceLinkType = ”lns : loanApproveLinkType”
myRole = ”approver”/ >

< /partners >

There are two roles defined in the above clauses and in the derived SPPC model two
agents (a(customer, ID), a(approver, ID1)) directly correspond to them, whereID
andID1 in each role are used to identify the agent. They can be anything that is identi-
fiable such as URL.

Translation from message passing activities defined in BPEL4WS to SPPC mes-
sageBPEL4WS message passing activities as classified are< receive >, < invoke >
and< reply >. The translating principles for them are different.

– The activity< receive > in BPEL4WS means that a web service operation will
not be invoked until certain requests (inputVariable of web service operations) ar-
rive. From multi-agent point of view, the semantic of this activity is quite simple:
a message sender (partnerRole) sends a message to a service provider (myRole).
Thus this activity leads to a basic SPPC message that is:

msg

mid, pre([]), mb(portType : operation : inputV ariable),
post([update(inputV ariable), store(portType : operation : inputvariable, ID)])
sender(a(partnerRole, ID1)), receiver(a(myRole), ID)

In a conventional BPEL4WS based workflow system, the variable values are stored
in the centralised workflow server and can be used and updated at any time needed.
However, in a LCC based multi-agent system, there is no centralised data store,
thus, the values of all the variables have to be passed together with the LCC protocol
(defined in LCC common knowledge) and messages between the agents.
The post-conditionupdate(inputV ariable) defined in the above SPPC message is
used to record/update the value of the variable involved in the incoming message in
LCC common knowledge. It used as a constraint for all the incoming messages for
receivers. We will not specify it in every SPPC message for simplicity. The post-
conditionstore(partnerRole : protType : operation : inputV ariable, ID) is
used to record the the ID of the message sender so that later on, a response will be
sent back to the right agent (service requestor). This constraint is used to represent
the coherent relation between< receive > and< reply > activities in BPEL4WS.

– The< reply > construct allows the business process to send a message in reply
to a message that was received through a< receive >. The combination of a
< receive > and a< reply > forms a request-response operation on the WSDL
portType for the process. The SPPC message for< reply > derived is

mb

mid, pre([fetch(partnerRole : portType : operation : variable, ID1)]),
mb(portType : operation : variable), post([]),
sender(a(myRole, ID)), receiver(a(partnerRole), ID1)

The constraintfetch(partnerRole : portType : operation : variable, ID1)
is used to find the properID of the agent that sent request, which, together with
constraintfetch(partnerRole : protType : operation : inputV ariable, ID),
are used to keep the semantic of combination of< receive > and< reply >
activities.

– The < invoke > construct allows the business process to invoke a one-way or
request-response operation on a portType offered by a partner. Thus, the corre-
sponding SPPC clauses can be one message or two message units connected by
”then”, which depends on weather or not theoutputV ariable is defined. If it isn’t
defined, the corresponding SPPC message is:

mb

(
mid, pre([fetch variable(inputV ariable)]), mb(portType : operation : inputV ariable),
post([]), sender(a(myRole, ID)), receiver(a(partnerRole), ID1)

)

If the outputV ariable is defined, the SPPC messages are:

mb

(
mid, pre([fetch variable(inputV ariable)]), mb(portType : operation : inputV ariable),
post([]), sender(a(myRole, ID)), receiver(a(partnerRole), ID1)

)

then

mb

mid, pre([fetch variable(outputV ariable)]),
mb(portType : operation : inputV ariable : outputV ariable),
post([update(outputV ariable)]), sender(a(partnerRole, ID)), receiver(a(myRole), ID1)

From the above analysis, it is clear that all the message passing activities in BPEL4WS
can be translated to SPPC clauses.

Translation from computing activities defined in BPEL4WS to SPPC constraints
The computing activities defined in BPEL4WS are< assign >, < wait > etc. Since
the translation principles for all of them are the same, we only discuss the translation
of < assign > in detail. The activity< assign > in BPEL4WS specification de-
fines the internal variable assignation of the BPEL4WS workflow engine and it gives
the BPEL4WS computational ability. In SPPC, constraints (post-conditions and pre-
conditions) are the only places where we can do computation. Therefore, the com-
putation carried by the centralised BPEL4WS server, as addressed earlier, should be
dispatched to the agents in the multi-agent system as constraints for them to satisfy.
Eventually, which agent executes what constraints doesn’t matter too much since the
execution of constraints is not role specific in BPEL4WS. The only issue is how the
execution order between the computing activities and the other activities is kept in the
generated SPPC model, which requires the consideration of structure activities also.

Translation from structure activities defined in BPEL4WS to SPPC modelBPEL4WS
structure activities control the execution order between the activities (message pass-
ing activities, computing activities and structure activities) that are nested within them.
SPPC, however, uses operators to control the execution orders of basic message clauses.
The temporal order between computing clauses and message passing clauses are repre-
sented by the relation between messages and their constraints. Therefore, a BPEL4WS
structure activity might be represented by two SPPC notations together:1 >SPPC op-
erators and2 >combinations of constraints and messages. The principles of when the
content of a structure activity should be represented by SPPC using operators and when
they should be represented by the combinations of messages and pre-conditions/post-
conditions in SPPC, are quite different for different BPEL4WS structure activities.

– The < sequence > activity allows us to define a collection of activities to be
performed sequentially in lexical order in BPEL4WS. Using the SPPC ”then” op-
erator, the relation between message passing activities and structure activities can
be kept without changing anything. To represent relations between message passing
activity/structure activity and computing activity in a< sequence >, the following
re-write rules have to be applied

(A1 then A2) ⇒ (E1 → C) if (A1 is a message passing activity) ∧ (A1 → E1)∧ (rule1)
(A2 is a computing activity) ∧ (A2 → C)

(A1 then A2) ⇒ (C1 ∧ C2) if (A1 is acomputing activity) ∧ (A1 → C1)∧ (rule2)
(A2 is a computing activity) ∧ (A2 → C2)

(A1 then A2) ⇒ (C1 → E2) if (A1 is a computing activity) ∧ (A1 → C1)∧ (rule3)
(A2 is a structure activity) ∧ (A2 → E2)

(A1 then A2) ⇒ (E1 or E2) if (A1 is < while > activity) ∧ (A1 → E1)∧ (rule4)
(A2 is not a computing activity) ∧ (A2 → E2)

(C1 → (E1 or/par...or/par En)) if (C1 → E1) ⇒ Ei, ..., (C1 → En) ⇒ Ei+n (rule5)
⇒ (Ei or/par...or/par Ei+n)
((E1 or/par...or/par En) → C1) if (E1 → C1) ⇒ Ei, ..., (En → C1) ⇒ Ei+n (rule6)
⇒ (Ei or/par...or/par Ei+n)

C1 → A1 andA1 → C1 in the above rules meansC1 is used as the precondition/post-
condition ofA1. Rule1 andrule2 means that a computing activity that is defined

before/after a message passing activity in a< sequence > can be used as the pre-
condition/post-condition of the SPPC message that is derived from the message
passing activity. The re-write rules for dealing with the computing activity defined
before/after a structure activity are expressed inrule3. Rule4 is used to deal with a
special case where a< while > activity is involved in a< sequence >. The time
relation between< while > and the activity defined after it in< sequence > is
not a sequential order but is a exclusive ”or” order. Thecondition specified for the
< while > activity actually controls the execution of it. If thecondition holds, the
< while > activity is executed repeatedly and only when thecondition fails, the
activity specified after< while > can get executed.Rule5 andrule6 are used to
assign the pre-condition/post-condition to the SPPC messages which are connected
by ”or”/”par”.
The algorithm for translating a< sequence > into SPPC clauses is shown in
figure 3. it should be noticed that a computing activity can never be used as the last

proceduretranslate sequence(Sequence, CL SPPC)
input: Sequence, the BPEL4WS < sequence > activity

CL, a list that stores all un− assigned conditions
output:SPPC, SPPC clauses derived from given < sequence > activity
initiate a, pointer (P1), and let it point to the first element Sequence and CL
while (P1 is not pointing to the last element Sequence)

fetch the activity(A) that P1 is pointing to in Sequence
if (A is a computing activity)

translate A into conditions and put it at the end of CL
make P1 point to next activity

else if(A is a message passing activity)
fetch all the condition in CL use them as
pre− conditions of the SPPC message(S) drived from A
empty CL and make P1 point to next elment of CL
SPPC = SPPC then S

else if(A is a structure activity)
translate structure activity(A, CL, SPPC1)
SPPC = SPPC then SPPC1

Fig. 3. Algorithm for deriving a SPPC model from a BPEL4WS< sequence > activity

element of a< sequence > activity as discussed earlier. Otherwise, the automatic
translation is very hard to achieve. Therefore, not all the existing BPEL4WS models
can be directly translated into SPPC models using this algorithm .

– The<switch> construct allows us to select exactly one branch of activity from a
set of choices. A< switch > activity can be represented using SPPC ”or” notation
in the following manner,

(C1 → A1) or (C2 → A2) or ...

whereCi means the conditions defined for< case > in < switch > and Ai

represents the activities that are defined as the content for each< case > which
could be basic activities or structure activities. The translation of the content of each
< case > relies on the types of them. Thecondition defined for each< case >
can be translated using the following re-write rule as well as the rules defined for
< sequence >:

(C1 → A1) ⇒ (C1 → E) if A1 ⇒ E (rule7)

The algorithm for translating a BPEL4WS< switch > activity to a SPPC model
is given in figure 4.

proceduretranslate switch(Switch, CL, SPPC)
input: Switch, the BPEL4WS < switch > activity

CL, a list that stores all un− assigned conditions
output:SPPC, SPPC clauses derived from given < switch > activity
for (each branch(B) of switch)

extract the conditions defined for each branch and put in CL
extract the contents(C) of B
translate structure activity(C, CL, SPPC1)
SPPC = SPPC or SPPC1

Fig. 4. Algorithm for deriving a SPPC model from a BPEL4WS< switch > activity

– The< flow > construct allows us to specify one or more activities to be performed
concurrently. It creates a set of concurrent activities directly nested within it. It
further enables expression of synchronization dependencies between activities that
are nested directly or indirectly within it. The link construct is used to express these
synchronization dependencies. A link has a name and all the links of a flow activity
must be defined separately within the flow activity. The standard source and target
elements of an activity are used to link two activities. The source of the link specify
a source element specifying the link’s name and the target of the link specify a
target element specifying the link’s name. The following example shows that links
can cross the boundaries of structured activities. There is a link named ”CtoD” that
starts at activity C in sequence Y and ends at activity D, which is directly nested
in the enclosing flow. This synchronisation link confines the execution order of
activity C and activity D. Under its control, activity D must be executed after the
execution of activity C.

< flow >
< links >

< link name = ”CtoD”/ >
< /links >
< sequence name = ”Y ” >

< receive name = ”C” ... >
< source linkName = ”CtoD”/ >

< /receive > < invoke name = ”E”.../ >
< /sequence >
< invoke partnerLink = ”D” ... >

< target linkName = ”CtoD”/ >
< /invoke >

< /flow >

In a conventional client-server based workflow system, the execution of concurrent
activity and control of the synchronization link are possible because the workflow
server could control the state of all the branches nested in a concurrent activity.

However, in a multi-agent based open environment, the centralised coordinator is
eliminated. Thus the only way for agents to coordinate with each other is again,
through message passing, which means all the synchronisation links have to be
controlled by message passing between agents as well. Figure 5 shows the algo-
rithm that we use to turn all the synchronisation links defined in a< flow >
activity into SPPC messages. Using the above algorithm, a< flow > activity can

proceduretranslate flow(Flow, CL, SPPC)
input: Flow, the BPEL4WS < switch > activity

CL, a list that stores all un− assigned conditions
output:SPPC, the SPPC clauses derived from given < flow > activity
initiate a public list(L) //public list can be accessed by any procedure
extract all links defined in Flow and put them in L
for (All the links(L1) in L)

scan the whole F low and find out the activity(A) that defines the < source > of L1
scan the whole F low and find out the activity(A1) that defines the < target > of L1
replace A with ′′A then A′′2
in which A2 is a message sended from the receiver of A to sender of A2
replace A2 with ′′A3 then A′′2
in which A3 is a message sended from the receiver of A to sender of A2

for (All the branches(B) of FLow)
translate structure activity(B, CL, SPPC1)
SPPC = SPPC par SPPC1

Fig. 5. Algorithm for deriving a SPPC model from a BPEL4WS< flow > activity

be represented by a SPPC model. It should be noticed that when a SPPC model is
translated into a LCC protocol, the SPPC messages generated for synchronisation
links are only partially translated. The message that is derived for the ”source” of a
synchronisation link in SPPC is only used for the message sender’s LCC protocol
generation. In contrast, the message that is derived for the ”target” of a synchronisa-
tion link in SPPC is only used for the message receiver’s LCC protocol generation.
Thus the algorithm for generating LCC protocols from SPPC models have to be
revised to be used for dealing with SPPC models derived from BPEL4WS specifi-
cations.

– The < while > construct allows us to indicate that an activity is to be repeated
until a certain success criteria has been met. The notation that is used in SPPC for
repeated execution of messages is the combination ofinvoke(mid) and the SPPC
message (M1) that theinvoke points to. Whether the loop is executed is controlled
by the precondition defined for theM1. However, a BPEL4WS< while > activity
represented loop might start with a message passing activity, a computing activ-
ity or a structure activity and the execution of the its content is controlled by the
condition associated with it. Therefore, the translation from a< while > activity
to SPPC clauses involves two parts: the translation ofcondition defined and the
re-write of content of< while >. The principle of processing theconditions de-
fined for< while > structure activity is complete same with that of< switch >.
The re-writing of< while > highly replies on the first and last elements nested in

it. Several re-write rules are thus defined for its different sorts of child elements.
(A1 then...then Ai) ⇒ if A1 ⇒ E1, A ⇒ Ei (rule8)
(E1 then...then En) ((Ei → generate invoke(E1)) ⇒ En

(A1 or/par...or/par Ai) ⇒ if A1 ⇒ E1, ..., Ai ⇒ Ei, (rule9)
(Ei+1 or/par...or/par Ei+n) ((E1 → generate invoke(E1)) ⇒ Ei+1, ...,

((Ei → generate invoke(Ei)) ⇒ Ei+n

(Ei → generate invoke(E1)) if generate invoke(E1) ⇒ E2) (rule10)
⇒ (Ei then E2)
generate invoke(E1) ⇒ if the first element of E1 (rule11)

generate invoke(E2),
or/par...or/par
generate invoke(En)

 is (E2 or/par...or/par En)

generate invoke(E1) ⇒ invoke(E2) if the first element(E2) of E1 (rule12)
is a single SPPC message

By applying the above re-write rules, a< while > activity can be represented us-
ing SPPC notation. The algorithm for the< while > activity’s translation is given
in figure 6

proceduretranslate while(While, CL, SPPC)
input: While, the BPEL4WS < switch > activity

CL, a list that stores all un− assigned conditions
output:SPPC, SPPC clauses derived from given < while > activity
extract the conditions defined for While and put it at the end of CL
extract the contents(C) of While
translated structure activity(C, CL, SPPC1)
invoke generator(SPPC1, Invoke)
loop generator(SPPC1, Invoke, SPPC2)
SPPC = SPPC2

procedureinvoke generator(SPPC, Invoke)
input: SPPC, SPPC clauses
output:Invoke, a invoke or sets of invokes connected by ′′or/par′′

extract the first element(E) of SPPC
if (E is a SPPC message)

Invoke = invoke(E)
else

for (each branch(B) of E connected by ′′or/par′′)
invoke generator(B, Invoke1)
Invoke = Invoke or/par Invoke1

procedureloop generator(SPPC1, Invoke, SPPC2)
input: SPPC1, SPPC clauses

Invoke, a invoke or sets of invokes connected by ′′or/par′′

output:SPPC2, SPPC clauses that represent loop
SPPC2 = SPPC1
extract the last element(E) of SPPC2
if (E is a SPPC message)

replace it with ′′E then Invoke′′

else
for (each branch(B) of E)

loop generator(SPPC2, Invoke, SPPC3)
SPPC2 = SPPC3

Fig. 6. Algorithm for deriving a SPPC model from a BPEL4WS< while > activity

4.4 Generating a MAS Interaction Protocol (LCC) From a SPPC Model

Although the main components of both SPPC and LCC aremessages and constraints
the same, they are built based on different concepts. With LCC, the MAS interaction

protocol is defined from the views of different agents where each agent has its own
definitions, whereas with SPPC, the protocol model is built based on the messages
passing, which means that the SPPC model is viewed from the aspect of messages but
not agents. However, from the notations of SPPC and LCC we can see that SPPC is
eventually a subset of LCC, so a SPPC model does contain all the information that
we need to construct a LCC protocol.Message body, sender and receiverfrom SPPC
model together indicate the message being passed and direction of it in LCC.Junctions
in SPPC can be used as LCC’soperators.

One important issues about SPPC modelling is that role dependency between SPPC
clauses must be addressed. Role dependency means that two adjacent SPPC clauses
connected by athen operator at least need to have a same role defined in them as
shown below:

msg(MID, mb(...), sender(a(Role, ID)), receiver(a(Role2, ID1)))
then
msg(MID1, mb(...), sender(a(Role3, ID3)), receiver(a(Role, ID)))
...

In contrast, clauses shown below is not translatable, although it might be rational right:

msg(MID, mb(...), sender(a(Role1, ID1)), receiver(a(Role2, ID2)))
then
msg(MID1, mb(...), sender(a(Role3, ID3)), receiver(a(Role4, ID4)))
...

To deal with such cases, the SPPC model is pre-processed before being translated to the
LCC framework by correcting the role dependency. For example, after pre-processing,
the above SPPC clauses become:

msg(MID, mb(...), sender(a(Role1, ID1)), receiver(a(Role2, ID2)))
then
msg(MID2, mb(run this), sender(a(Role2, ID2)), receiver(a(Role3, ID3)))
then
msg(MID1, mb(...), sender(a(Role3, ID3)), receiver(a(Role4, ID4)))
...

The messagerun this defined above only serves as a connector. Thus, each message
has role dependencies with its adjacent siblings. For different SPPC junctions, the pre-
processing mechanism is different, the algorithm for pre-processing a SPPC model for
later translating is given in figure 7

procedureseuqence precessor(M1, M2, M3)
inputs: M1, M2, two element conencted by a ′′then′′ operator
outputs: M3, a processed model with all of its clauses role dependent on each other
if (M1 is a message)&&(M2 is a message)

if (M1 and M2 doesn′t contain at least one same role)
generate a new message(TM) using recevier of M1 as sender and sender of M2 as receiver
M3 = M1 then TM then M2

else
M3 = M1 then M2

else if(at least one of M1 and M2 is a or/par structure)
or/par precessor(M1, M2, M4)
M3 = M4 then M2

else if(M1 is a message)&&(M2 is a ′′invoke(mid)′′)
fectch the SPPC message(M4) that identified by mid

if (agents involved in M1 don′t contain the sender of M4)
insert a new message(M5) between M1 and invoke(mid)
using receiver of M1 as its sender and sender of M4 as its receiver
M3 = M1 then M5 then invoke(mid)

procedureor/par precessor(M1, M2, M3)
inputs: M1, M2, two SPPC element which can be a message or a or/par structure
outputs: M3, a processed SPPC element with all of its clauses role dependent on each other
if (M1 is a message)&&(M2 is a or/par structure)

process msg or/par(M1, M2, M3)
if (M1 is a or/par structure)&&(M2 is a message)

process or/par msg(M1, M2, M3)
if (M1 is a or/par structure)&&(M2 is a or/par structure)

procedureprocess msg or/par(M1, M2, M3)
inputs: M1, M2, two SPPC elements which is a message and a or/par structure repectively
outputs: M3, a processed SPPC element from M1 with all of its clauses role dependent on each other
initiate a list(L)
for (the first element(E) of each branch of M2)

if (M1 and E doesn′t contain at least one same role)
generate a new message(TM) using recevier of M1 as sender and sender of E as receiver
put TM in L

M3 = M1
while (L is not empty)

fetch the first element(M5) in L
M3 = M4 then M5

procedureprocess or/par msg(M1, M2, M3)
inputs: M1, M2, two SPPC elements which is a or/par structure and a message repectively
outputs: M3, a processed SPPC element from M1 with all of its clauses role dependent on each other
for (each branch(B) of M1)

pre− precessor(B, B1)
retrieve the last element(E) of B1
if (E is not a invoke(mid))&&(E and M2 doesn′t contain at least one same role)

generate a new message(TM) using recevier of E as sender and sender of M2 as receiver
replace E in B1 with ′′E then TM ′′

put B1 in L
fetch the first element(M5) in L
M3 = M5
while (L is not empty)

fetch the first element(M6) in L
M3 = M3 or/par M6

procedureprocess or/par or/par(M1, M2, M3)
inputs: M1, M2, two SPPC elements which are two or/par structures
outputs: M3, a processed SPPC element from M1 with all of its clauses role dependent on each other
initiate two lists(L, L1)
for (each branch(B) of M1)

pre− precessor(B, B1)
retrieve the last element(E) of B1
for (the first element(E1) of each brach of M2)

if (E is not a invoke(mid))&&(E and E1 doesn′t contain at least one same role)
generate a new message(TM) using recevier of E as sender and sender of E1 as receiver
put TM in L

M6 = E
while (L is not empty)

fetch the first element(M5) in L
M6 = M6 then M5

replace E with M6 in B1
put B1 in L1

fetch the first element(B2) in L1
M3 = B2
while (L1 is not empty)

fetch the first element(B3) in L
M3 = M3 or/par B3

Fig. 7. Algorithm For Pre-processing a SPPC model

The underlying principles of the above algorithm are:

1 > If two SPPC messages (A and B) are connected by ”then” and they don’t have at
least one same role defined, then a new message (C) is inserted after A and before
B (A then C then B) usingrun this as its message body , the receiver of A as its
sender and the sender of B as its receiver.

2 > If a SPPC message (A) and a SPPC or/par structure (B) are connected by ”then”,
the first basic SPPC message(Ci) of each branch of B are compared with A and
according to the roles defined in them, a list of new SPPC messages (Mn) are
generated and put after A (Athen M1 then ... thenMn).

3 > If a SPPC or/par structure (A) and a SPPC message (B) are connected by ”then”,
the last basic SPPC message(Ci) of each branch of A are compared with B and
according to the roles defined in them, a list of new SPPC messages (Mn) are gen-
erated and put afterCi (Ci thenMn) and all the branches of A are also processed
using the algorithm.

4 > If a SPPC or/par structure (A) and a SPPC or structure (B) are connected by ”then”,
the last basic SPPC message(Ci) of each branch of A are compared with the first
basic SPPC message (Di) of each branch of B and according to the roles defined in
them, for eachC in Ci, a list of new SPPC messages (Mn) are generated and put
afterC (C then M1 then ... then Mn).

The notationinvokein a SPPC model indicates the ending point of the loop and the
parameter of it indicates the the starting point of it. For example, the following SPPC
model shows a repeated message passing froma(Role1, ID1) to a(Role2, ID2):

msg(mid1, pre([]), mb(M1), post([]), sender(a(Role1, ID1)), receiver(a(Role2, ID2)))
then
invoke(mid1)

When translating a SPPC model with loops to a LCC protocol, all the messages
betweeninvokeand the message being invoked can be extracted to define the behaviors
of a new role for loop, as long as the message invoked is not the first message defined
for that agent. In LCC, the only way to represent loops is through use of recursion on
a(Role,ID).

a(Role, ID) :: M ⇒ a(Role1, ID1) then a(Role, ID)

For example, the above LCC clause represents a repeated message sending froma(Role, ID)
to a(Role1, ID1). In this way, everything defined fora(Role, ID) is executed repeat-
edly. However, if we only want parts of the definition of an agent get executed in a loop
manner, a new role must be invented for this purpose as follows:

a(Role, ID) :: M ⇒ a(Role1, ID1) then a(loop(Role), ID)

a(loop(Role), ID) :: M1 ⇒ a(Role2, ID2) then a(loop(Role), ID)

What the above LCC protocol means is that agenta(Role, ID) keeps sending a mes-
sageM1 to agenta(Role2, ID2) after it sends a messageM to agenta(Role1, ID1).
The rolea(loop(Role), ID) is purely defined for the purpose of repeated message send-
ing of M1.

In SPPC model, we use the combination ofinvoke(mid) andmsg(mid, ... to rep-
resent loop, which has to be translated into a LCC compatible fashion. The loop pro-
cessing algorithm in figure 8 shows how to pre-process the all the loops defined in a
SPPC model. The algorithm for generating a LCC protocol from a processed SPPC

procedureprocess loops(SM, SMn)
inputs: SM, a original SPPC model
outputs: SMn, a SPPC model that is with all of roles that are relative to loops replaced
find the first SPPC message(M1) that leads to a loop and the invoke(mid) that points to it
extract the SPPC model(SM1) between them
all the roles(a(R, ID)) defined in SM1 have to be replaced with a(loop(R), ID)
process loops(SM1, SMn)

Fig. 8.Algorithm For pre-processing all the loops defined in a SPPC model

model is shown in figure 9.

proceduregenerator(SM, List)
inputs: SM, a SPPC model that is used to derive a LCC protocol
outputs: List, a LCC protocol list that stores generated LCC protocol from the given SPPC model
extract all the agents(a(Ri,iεI , IDi)) defined in the SM and put them in a list− L = [a(Ri, IDi)]
while (L is not empty)

fetch the first element(a(Ri, ID)) inL
generate(a(Ri, ID), SM, LMi, List1)
put LMi in List
List = merge List1 and List

proceduregenerate(a(Ri, ID), SM, LMi, List)
inputs: a(Ri, ID), is an agent that we are going to generate a LCC protocol for

SM, a SPPC model that is used to derive a LCC protocol
outputs: LMi, a LCC protocol that is generated from the given SPPC model for a(Rolei, ID)

List, a LCC protocol list that stores generated LCC protocol from the given SPPC model
if (SM is in the form of SMi OP SMi+1)

generate(a(Ri, ID), SMi, LMn, List)
generate(a(Ri, ID), SMi+1, LMn+1, List)
if (LMn = null && LMn+1 6= null)

LMi = LMn+1
else if(LMn 6= null && LMn+1 = null)

LMi = LMn

else if(LMn 6= null && LMn+1 6= null)
LMi = LMn OP LMn+1

else if(SM is a SPPC message(M1))
if (M1 contains Ri)

LMi = LMn

else if(SM contains a a(loop(Ri), ID))
LMi = a(loop(Ri), ID)
extract the invoke(mid) that points to M1 and extract the
SPPC model defined between invoke and M1(SM1)
generator(SM1, LMi, List)

Fig. 9. Algorithm For Deriving a LCC protocol from a SPPC model

5 Agent Design

The agents that participate the interaction on a LCC protocol based MAS platform are
dummy agents. The agents themselves don’t need to make complex decision making

but simply follow what the LCC protocol asks them to do and perform some of the
computational functions. Therefore, the design issues of this sort of agents are mainly
about how to enable the agent conform to the protocols received and take proper actions
accordingly. Figure 10 the conceptual layer of the internal structure of an agent.

Fig. 10.Agent Internal Structure

– Transition layer: is responsible for the underlying message passing between dif-
ferent agents. It controls the messages’ passing at the lowest level of our system. It
retrieves the processed outgoing messages from communication layer and forwards
the received messages to communication layer. The ”incoming message queue” and
”outgoing message queue” are used to store the message received and the messages
that are going to be sent out. These two message queues are operated by ”message
receiver” and ”message sender” in a FIFO manner and are used as a channel for
the communication between the transition layer and communication layer. Once a
”message receiver” receive a message package from others, it puts it in in the end
of ”incoming message queue” while ”message sender” fetches the first message
in the ”outgoing message queue” and sends it out. The main task that ”message
receiver” needs to perform is to filter transition level information of the received
package such as if the received message is intended for it, or if the agent it repre-
sents for matches the agent’s capability description attached in the message pack-
age. In contrast, ”message sender” adds transition layer to the outgoing message
package according to the information derived from communication layer.

– Communication layer: is responsible for unpacking the received messages from
transition layer and producing the outgoing messages according to the protocol at-
tached with the received messages. ”Incoming message processor” is used to judge

whether the message that is fetched from ”incoming message queue” is the one
that is required by the ”protocol expander” or not. If so, ”incoming message pro-
cessor” passes it to ”protocol expander”. Otherwise, it put this message and every-
thing that is attached with the message at the end of ”incoming message queue”
for later processing. ”Outgoing message processor ” receives information from ”
protocol expander” and puts them at the end of ”outgoing message queue”. Pro-
tocol expander” communicates with ”incoming message processor” and ”outgoing
message processor” in following ways:
• If it doesn’t hold a LCC protocol at the moment, it asks the ”incoming message

processor” for message package. Once it receives it, it unpacks the message
package, performs the required tasks, re-generates a new message package and
sends it to ”outgoing message processor” using the following protocol expand-
ing and re-write rules[Rob04]:

A :: B
Mi,Mo,P,O−−−−−−−−−→ A :: E if B

Mi,Mo,P,O−−−−−−−−−→ E

A1 or A2
Mi,Mo,P,O−−−−−−−−−→ E if ¬closed(A2) ∧ A1

Mi,Mo,P,O−−−−−−−−−→ E

A1 or A2
Mi,Mo,P,O−−−−−−−−−→ E if ¬closed(A1) ∧ A2

Mi,Mo,P,O−−−−−−−−−→ E

A1 then A2
Mi,Mo,P,O−−−−−−−−−→ E then A2 if A1

Mi,Mo,P,O−−−−−−−−−→ E

A1 then A2
Mi,Mo,P,O−−−−−−−−−→ A1 then A2 if closed(A1) ∧ A2

Mi,Mo,P,O−−−−−−−−−→ E

A1 par A2
Mi,Mo,P,O1

⋃
O2−−−−−−−−−−−−−→ E1 par E2 if A1

Mi,Mo,P,O1−−−−−−−−−→ E1 ∧ A2
Mi,Mo,P,O2−−−−−−−−−→ E2

C ← A ⇐ M
Mi,Mi−M⇐A,P,φ−−−−−−−−−−−−−−→ c(M ⇐ A) if (M ⇐ A) ∈ Mi ∧ satisfy(C)

M ⇒ A ← C
Mi,Mo,P,M⇒A−−−−−−−−−−−→ c(M ⇒ A) if satisfied(C)

a(R, I) ← C
Mi,Mo,P,φ−−−−−−−−→ a(R, I) :: B if clause(P, a(R, I) :: B) ∧ satisfied(C)

• If it holds a protocol and is waiting for a message, it asks ”incoming message
processor” for the message and blocks itself until it receives the required mes-
sage.

During the process of protocol expansion, all the constraints involved are sent to
”constraints solver” at application layer for further processing.
”Outgoing message processor” simply forwards the message package that it re-
ceives from ”protocol expander” to ”outgoing message queue” currently. It is a
place holder for outgoing message processing. For example, the message package
may have priorities. In such case, the ”Outgoing message processor” is responsible
for sorting the messages in ”outgoing message queue” accordingly.

– Application layer : is the place where the constraints defined in LCC protocol are
solved. ”Web services invoker” takes care of all the issues of web services invoca-
tion including: invoking a web service according to the received messages; handling
the returned message from invoked web service and converting them into agent’s
messages. ”Constraint solver” provides a container for executing the constraints
that are requested by the ”protocol expander”. The way for solving the constraints
might be attached in the LCC protocol or purely solved by the local methods.

6 Conclusion and Future Work

In this paper, we demonstrated our work on how to develop a pure decentralised work-
flow system that is deployed on protocol (LCC) based multi-agent platform using busi-

ness process models (BPEL4WS) as a starting point. Our work shows that architec-
ture of conventional distributed workflow management system (client-server) can be
changed without significantly affecting the methods, tools and models that exist in cur-
rent workflow community. In addition, the re-use of existing results for new system
development hugely reduces the amount of work that needs to be carried by other sim-
ilar approaches, which conforms to the basic principle of software engineering strictly.

A language mapping technique is performed between business process modelling
language (BPEL4WS) and IP (LCC) to generate the protocol that is used in MAS from
given business process model. Since the gap between them is quite huge, we use a an-
other modelling language (SPPC) as an intermediation. During the language mapping
process, we found that although most of the main concepts from business process mod-
elling language (BPEL4WS) and SPPC match, some particular notations from certain
business process modelling language cannot be seamlessly represented by a another
modelling language which is based on a different paradigm. For example, the comput-
ing activities defined at the end of a< sequence > activity in BPEL4WS can not be
easily translated into SPPC clauses as addressed earlier and also, the translation for
the synchronisation links defined in< flow > requires the revision of LCC proto-
col generation algorithm from SPPC. Such restriction means only some of BPEL4WS
specifications (those conform to the language mapping rules) can be used for protocol
based MAS development, which makes the approach discussed in this paper incom-
plete. Fortunately, these limitations can be overcome by revising the input business
process models of our system minorly.

We are currently working on testing our system. We will then be able to determine
various benefits and drawbacks of our approach when it is applied for real life appli-
cation. Also, we are developing a new approach to bridge the gap between business
process model and MAS interaction protocol seamlessly such that all the existing pro-
cess models can be adopted for the new system.

References

[AWS00] Barbara Staudt Lerner Eric K. McCall Leon J. Osterweil Alexander Wise, Aaron
G. Cass and Stanley M. Sutton. Using little-jil to coordinate agents in software engi-
neering. InAutomated Software Engineering Conference (ASE 2000), pages 155–163,
September 2000.

[BD99] T. Bauer and P. Dadam. Efficient distributed control of enterprise-wide and cross-
enterprise workf. InThe Workshop Informatik99: Enterprise-wide and Cross-
enterprise Workflow Management: Concepts, Systems, Applications,, pages 25–32, Oct
1999.

[BPE03] Bpel4ws v1.1 specification. Technical report, May 2003.
[EP99] J. Eder and E. Panagos. Towards distributed workflow process management. InWork-

shop on Cross-Organisational Workflow Management and Coordination, Feb 1999.
[FF94] T Finin and R Fritzson. Kqml-a language and protocol for knowledge and informa-

tion exchange. InProceeding of 13th International Distributed Artificial Intelligence
Workshop. July 1994.

[FIP00] Fipa acl message structure specification. Technical report, 2000.
[FK] G. J. Fakas and B. Karakostas. A peer to peer (p2p) architecture for dynamic workflow

management. InJournal of Information and Software Technology.

[GAK95] R. Guenthoer D. Agrawal A. El. Abbadi G. Alonso, C. Mohan and M. Kamath. A
persistent message-based architecture for distributed workflow management. InIFIP
WG8.1 Working Conference Decentralized Organizations,Trondheim, August 1995.

[JGM98] J. Hosking J. Grundy, M. Apperley and W. Mugridge. A decentralised architecture
for software process modelling and enactment. InIEEE Internet Computing,, Sep/Oct
1998.

[JVS04] P. Buhler J.M. Vidal and C. Stahl. Multiagent systems with workflows. InIEEE Internet
Computing, volume 8(1), January/February 2004.

[J.Y04] J.Yan. A Framework and Coordination Technologies for Peer-to-peer based Decen-
tralised Workflow Systems. PhD thesis, School of Information Technology, Swinburne
University of Technology, 2004.

[LCB04] Dave Roberston L.Guo and Yun-Heh Chen-Burger. Business process model based
multi-agent system development. InProceedings of The Second Workshop On Collab-
oration Agents: Autonomous Agents for Collaborative Environments, September 2004.

[MRD03] S. Rinderle M. Reichert and P. Dadam. Adept workflow management system: Flexible
support for enterprise-wide business processes (tool presentation). InInternational
Conference on Business Process Management (BPM’03), volume 2678, pages 371–
379, June 2003.

[OWL01] Owl-s 1.0 release. Technical report, 2001.
[PHM99] S. Jablonski J. Neeb K. Stein P. Heinl, S. Horn and M.Teschke. A comprehensive

approach to flexibility in workflow management systems. InThe International joint
Conference on Work Activities Coordination and Collaboration (WACC99), pages 79–
88, Feb 1999.

[PMG98] J. Weissenfels A. K. Dittrich P. Muth, D. Wodtke and G.Weikum. From centralised
workflow specification to distributed workflow execution. InIntelligent Information
Systems - Special Issue on Workflow Management, pages 159–184. Kluwer Academic
Publishers, March 1998.

[Rob04] Dave Roberston. A lightweight method for corrdination of agent oriented web services.
In AAAI Spring Symposium on Sematic Web Services, July 2004.

[Yan00] Y. Yang. An architecture and the related mechanisms for webbased global cooperative
teamwork support, international. InJournal of Computing and Informatics,, pages 13–
19, Sep/Oct 2000.

