
A Structural Synthesis System for LCC

Protocols

Argyrios Grivas

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

School of Informatics

University of Edinburgh

2005

Abstract

LCC (Lightweight Communication Calculus) [10] is a language for specifying models

of interaction for multi-agent systems. It is an executable specification language in the

sense that mechanisms exist for deploying LCC protocols when coodinating software

components. It is also a declarative language in the sense that it may be understood

and analysed without committment to a specific deployment system. A weakness of

LCC from a software engineering point of view is that it has not been provided with

methods or tools for structured design of specifications. Currently, designers simply

write protocols. The aim of this project is to construct a structured design tool that

embodies an incremental design method.

Although LCC is a process calculus, it also has many features in common with

Horn clause specification and many of the analytical and deployment methods associ-

ated with it are based on forms of inference familiar to logic programmers. It is there-

fore natural to consider whether structured design methods for logic programs can be

applied to LCC. One of the best understood of these design methods is Techniques

Editing [2], in which definitions of predicates (as sets of Horn clauses) are constructed

incrementally from argument ”slices”. LCC, however, is not simply a Horn clause lan-

guage - it also is a process specification language. Process oriented methods of design

therefore might also be usefully applied, in particular to provide early ”skeletons”:

initial partial definitions used as a precursor to more detailed design.

i

Acknowledgements

I would like to thank my supervisor Dr. David Robertson for his help and guidance

throughout this endeavour. I would also like to express my appreciation to the Greek

State Scholarships’ Foundation for the financial support they provided me during my

studies.

ii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Argyrios Grivas)

iii

Table of Contents

1 Introduction 1

2 The LCC language 3

2.1 Coordination in multi-agent systems3

2.2 Use of concepts from logic programming and process calculus in the

coordination of multi-agent systems 5

2.3 Future directions of research in LCC10

3 Techniques editing 12

3.1 Techniques in Prolog .12

3.2 Applications of techniques editing14

4 Editing operations 17

4.1 Recognizing the problem .17

4.2 The LCC case .18

4.2.1 Types of patterns .18

4.2.2 Use of patterns in LCC .20

4.3 A method for structured building of LCC protocols21

4.3.1 Design of a suitable method21

4.3.2 Applying the method to a structured editor22

5 Implementation issues 30

5.1 Design of an editor implementing the method30

5.2 Internal structure of the editor .32

5.2.1 A class structure based on LCC syntax32

5.2.2 Implementation of basic operations36

5.3 A Graphical User Interface for protocol building38

5.3.1 Description of the graphical interface38

iv

5.3.2 Using class structure to provide the editing operations48

6 Evaluation and discussion 51

6.1 Comparing outcome with project objectives52

6.2 Comparing outcome with related work55

6.3 Future directions .57

7 Conclusion 60

A Using the interface to construct an example clause 62

Bibliography 76

v

Chapter 1

Introduction

The LCC (Lightweight Communication Calculus) language is an approach for decen-

tralized coordination of Multi-Agent Systems (MAS) in open environments. LCC is

an executable specification language in the sense that mechanisms exist for deploying

LCC protocols when coordinating software components. Although the LCC approach

has a strong theoretical basis and seems to provide a good balance between efficient

coordination and respect of the agents’ independence, there is some work to be done

yet from the software engineering point of view. In particular, one of the potential

issues that should be addressed is the structured design of LCC specifications. At the

moment, the designers have to write protocols by hand and no tool that supports this

process exists.

The aim of this project is to develop a structured design editor for LCC protocols.

In order to achieve this goal, a closer look to LCC itself is required. LCC is a pro-

cess calculus, but has a lot in common with Horn clause specification. Particularly, the

pre and post conditions, which actually determine the circumstances under which the

messages can be sent, have a lot in common with logic programming. It is therefore

straightforward to consider using structured design techniques from logic program-

ming in LCC specifications.Techniques editing[2] is a method used in Prolog, which

seems to adapt well up to a certain point to the LCC case. On the other hand, the fact

that LCC is a process calculus allows us to consider the use of process oriented design

techniques. A good combination probably is to use process-oriented methods to obtain

the ”skeletons” used byTechniques editing.

Apart from the practical value of the tool, there is also an interesting research as-

pect. We would to investigate how patterns can be used in languages like LCC. The

results can probably generalise to other similar languages. In particular, we will try to

1

Chapter 1. Introduction 2

check whether common programming techniques are involved in the process of proto-

col building and try to define their types if possible. The prototypical tool is influenced

by these observations. The tool can then be used to enable engineers to capture and

reuse such patterns when constructing protocols. It can also be used to experiment

with patterns in LCC in order to obtain a better knowledge of their role in LCC. The

suitability of techniques editingis another interesting issue from researchers’ point of

view. Particularly, we wish to evaluate how useful approaches from logic program-

ming can be in LCC. A long-term goal is to define a reasonable set of patterns, which

can be used to built LCC protocols in an efficient way, similar to the use of Prolog

techniques.

In the following sections, after discussing some background material on LCC and

techniques editing, we describe an attempt to develop a tool for building LCC protocols

by exploiting common patterns appearing in them. The organization of the thesis is as

follows:

• In chapter 2 we describe LCC and its applications

• In chapter 3 we present an approach to the structured building of programs in

Prolog

• In chapter 4 a proposed method for the structured building of LCC protocols is

described

• In chapter 5 some implementation issues about the prototypical tool are dis-

cussed

• In chapter 6 we evaluate the proposed method with regard to the features of our

editor

• Finally, in chapter 7 we conclude by summarising the outcome of our effort.

Chapter 2

The LCC language

2.1 Coordination in multi-agent systems

Multi-agent systems (MAS) are a promising approach for the development of large

scale applications in open environments like the web. This kind of system introduces a

new approach for developing web applications in which the systems are constructed by

a number of autonomous components, which cooperate to achieve the overall goals of

the system. The fact that these components are autonomous allows components built

from different teams to be assembled [7]. However, the development and deployment

of MAS raise several problems such as ensuring that the interaction conforms to the

rules, while the agents maintain their autonomy, ensuring that an agent can determine

its role in the interaction without having to monitor the whole interaction continously

and sharing the constraints between agents [10].

The first issue that must be tackled for the development of MAS on the web is the

standardization of the communication between agents. The most popular answer to

this is the development of Agent Communication Languages (ACLs). Today, the two

most popular languages that have been proposed, are the Knowledge Query and Ma-

nipulation Language (KQML) [22] and the Foundation for Intelligent Physical Agents

Agent Communication Language (FIPA-ACL) [14]. Both languages adopt the theory

of speech acts [16] for the interaction between the agents. In particular, these lan-

guages define message types such as ”inform” or ”ask” messages for communication

between agents. These message types correspond to performatives which define differ-

ent speech acts. Note that the purpose of these languages is to provide a standardized

way of knowledge exchange between the agents. They are not supposed either to define

the content of the messages or to determine when a message should be sent.

3

Chapter 2. The LCC language 4

Another issue in order to achieve meaningful interaction between agents is to de-

termine the conditions under which the interaction must take place. Since a MAS is

actually a society of autonomous agents more or less similar to human societies, the

agents in a MAS have to adopt some conventions and follow some rules in order to

be able to operate as a member of the society. These conventions are said to represent

thesocial normsof the society and collections of these related to a specific task form

anagent protocol[12]. Two of the several approaches for specifying agent protocols

are the Electronic Institutions (EI) methodology [17] and the Conversation Policies

approach [18].

The second of the two approaches seems to have attracted the attention of many

researchers interested in MAS as it provides a comprehensible approach to the engi-

neering of such systems. A formalism of this methodology is given in [17]. The main

concept of EI approach is the representation of a MAS as an institution similar to the

ones that the humans form. The main features of an electronic institution are the roles,

the scenes, the dialogic framework, the performative structure and the normative rules.

The original goal of this effort as it is stated in [17] is ”the design and development of

architecturally- neutral electronic institutions inhabited by heterogeneous (human and

software) agents”. The EI methodology is widely recognized as an important effort on

specifying MASs and it is accepted that it manages to answer key coordination issues

in MAS.

Although the EI approach tackles most of problems, there are several weaknesses

in this method. Some of these weaknesses are highlighted in [12] and [7]. In partic-

ular, the lack of a mechanism for protocol dissemination to new agents that enter the

Institution, the static definition of the agent protocol which causes problems when we

do not exactly know in advance which the next steps of the protocol should be, the fact

that in practice, administrative agents must be used to ensure the synchronization in the

Institution and the fact that EI approach focuses on the global state of the interaction

and not on satisfaction of constraints on individual agents, are some of the issues that

are considered as drawbacks of the EI approach. It is therefore obvious that although

EIs are of significant importance for the MAS society, there are still issues to be solved

for the deployment of efficient MASs in an open environment like the web.

An interesting approach that promises to overcome these problems is the use of

process calculus for defining a protocol language. This technique has been further de-

veloped to allow constraints to be applied on the agents and therefore to provide a com-

plete framework for the coordination of MASs that seems to have desired properties

Chapter 2. The LCC language 5

that the EI approach lacks. Several aspects of this technique, such as the application

of model checking techniques to protocols written in the language and the use of the

language to coordinate web services, have been presented in a series of publications,

making this approach even more attractive. In the rest of this survey is described the

basic concepts of the method and the way that it can be used as mentioned above.

Moreover, an overview of some research work that is related in some way is given.

2.2 Use of concepts from logic programming and pro-

cess calculus in the coordination of multi-agent sys-

tems

The first publication of the series that introduces the use of techniques from logic

programming in multi-agent coordination problem, is [11]. Particularly, a brokering

method based on capability descriptions is introduced. The capability description lan-

guage that is defined, is based on predicate logic in a style derived from logic pro-

gramming is employed in this method. Apart from the capability language, a cor-

respondence language is introduced in order to represent correspondences between

agents’ capabilities. The brokering mechanism, given a query, constructs some bro-

kerage structures, which actually describe what information must be retrieved from

where and then assembles a sequence of messages that must be sent to the relevant

agents, in order to accomplish the given goal. Even though there is an implementa-

tion of the method, it is clearly stated that there are a number of issues that have to

be further researched. Namely, the choice between alternative brokerage structures,

the method for describing the correspondences, the use of a more sophisticated perfor-

mative language, the connection between the actual implementation of an agent and

the capabilities it advertises and some drawbacks of the current implementation are

identified by the authors as points of future improvement.

It is clear, as the authors recognise, that the method described above has to be

explored in more detail, in order to become a competitive solution for brokering in

multi-agent system. Especially, the use of a more expressive performative language

and probably one of the standardized ones (i.e. KQML or FIPA-ACL), the direct map-

ping of the agents’ ontologies to create the correspondences and a more sophisticated

implementation seem to be quite important issues for the deployment of such a mech-

anism in an open environment like the web. However, this approach is considered

Chapter 2. The LCC language 6

very important not only for the advantages of the mechanism itself but also as a part

of a wider approach for the coordination of MASs which adopts methods from logic

programming. Moreover, the major issues which have to be improved are not short-

comings of the approach at the theoretical level, but simplification assumptions that

are totally acceptable for research work in its early stages.

Another intersting method is the one introduced in [12]. This method is derived

CCS process algebra and aims to the specification of flexible protocols for the com-

munication between agents. A language for describing such protocols is also defined.

This language define a flexible protocol that consists of a number of agent protocols

while the agent protocols consist of terms connected by operators. The terms can be

performatives, agents or empty actions and the operators are connectors which define

the exchange of messages and the exact sequence. The protocol that defines the agents’

interaction is described in the protocol language and disseminated to the agents during

the dialogue as a part of the messages that they exchange. The protocols are consid-

ered to be flexible in the sense that they clearly overcome the restrictions of the static

definition and dissemination of protocols that the EI adopts.

The advantages of a method like the one described in [12] are significant. The

comparison with EI which is a well established methodology for developing MASs

shows that the proposed method gives solution to issues that are quite important for

deploying MASs in open environments. The lack of a dissemination mechanism, the

static definition of the dialogues and the need for centralized synchronization are all

quite crucial for an environment were neither the agents that will participate, nor the

exact steps of the interaction, are known at design time. This is definitely a potential

problem for the web case and therefore the proposed method is consired to be an im-

provement at least for these kind of cases. Moreover, the fact that the flexible protocol

language is formally defined and based on process algebra will allow the application

of several formal methods such as model checking of the protocols. Since this close

relation with the CCS process calculus is said to be intentional, the application of such

formal techniques can be expected as future work.

Further research on the concepts presented so far lead to the work presented in

[15]. The method described in [15] attempts to implement dialogue games using a

protocol language based on the one presented in [12]. This approach maintains all

the advantages introduced in [12] and extends the protocol language to enable it to

represent dialogue games. The addition to the protocol language of preconditions and

postconditions, which determine what should be true for an agent before and after

Chapter 2. The LCC language 7

a message is sent, restrict the agents’ behavior within the dialogue. In other words

these are constraints that represent the rules of the dialogue game. By satisfying the

conditions the desired behavior of the agent within a dialogue game is achieved. Since

these conditions are part of the protocol which is passed from agent to agent with

every message, all the agents obey the rules of the game without any need of global

state knowledge or global synchronization. The only requirements for the agent the

understanding of the protocol language and the satisfaction of the conditions. Another

important modification compared to the method in [12] is that messages apart from

the actual performative and the protocol, include the instance of the dialogue as it

actually occurs. This instance is called the dialogue clause and is used as a history of

the dialogue, a marker of the current state and a record for the current values of the

variables.

The proposed method can be considered an attractive alternative to the methods

that EI use to define and apply the dialogic framework. Apart from the advantages

that has already been identified in [12], this method inherits additional features like

the ability to allow an agent to take place in concurrent dialogue games. The main

achievement of this work is the introduction of a method for specifying agent protocols

which separates the protocol from the communicative model itself. The fact that the

only necessary knowledge is the protocol itself minimises the requirements that an

agent must meet in order to participate in the interaction. This feature of the method

is considered important since it is desireable to keep the agents as autonomous and

independent as possible.

The result of the research work described above is the formal definition of the

Lightweight Coordination Calculus (LCC) [10]. The abstract syntax of the language

is shown in figure 2.2. One aspect of the effort, as it is stated by the author, is the

invention of a logic programming language that provides an overall architecture for the

coordination of multi-agent systems. The whole architecture is described by showing

how the main issues of developing MASs are tackled using techniques taken from

programming. In particular, it is explained how:

• the interaction model can be represented in process calculus,

• the social norms that define the message passing behavior of the agents can be

applied by the satisfaction of mutual constraints individually to the agents,

• the state change of the interaction maps to the unfolding of a clause with respect

to the protocol,

Chapter 2. The LCC language 8

Framework := {Clause, . . .}
Clause := Agent:: Dn

Agent := a(Type, Id)

Dn := Agent|Message| Dn then Dn| Dn or Dn | Dn par Dn| null←C

Message := M ⇒ Agent|M ⇒ Agent←C |M ⇐ Agent|C←M ⇐ Agent

C := Term|C∧C |C∨C

Type := Term

M := Term

Wherenull denotes an event which does not involve message passing;Termis a struc-

tured term in Prolog syntax andId is either a variable or a unique identifier for the

agent.

Figure 2.1: Syntax of LCC dialogue framework ([10])

• the expansion of the distributed clause coordinate the agents,

• the interaction scope corresponds to constraints applied to the values that the

variables can take and

• the brokering can be achieved by providing additional information for the agents

(i.e. capability descriptions)

There are also several more details about LCC which must be highlighted. An

interesting point is the fact that the satisfaction of the constraints include in the protocol

can be done either internally using the agent’s mechanism or externally by using shared

knowledge in the form of Horn clauses passed with the messages. Another point is the

fact that all the requirements of LCC from an autonomous agent, can be encapsulated

in a module, which acts as an intermediary between the agent and the communication

medium and supplies the following: an encoder/decoder for the translation between

the message language and the LCC expressions, a protocol expander and a constraint

solver. These points are very important, since they make clear that the method achieves

to separate the protocol from the internal architecture of the agent. The fact that the

impact on the engineering of the agents has been minimized is probably one of major

advantages of the whole approach.

After having described in general the overall architecture behind LCC, it is worth

Chapter 2. The LCC language 9

summarising additional research that followed from this approach. The first one that is

discussed is presented in [3]. In this case a language based on concepts described be-

fore is defined (MAP language). It is shown how dialogue protocols written in this

language can be verified using model-checking techniques. Particularly, the SPIN

model checker is used and therefore a translator between the protocol language and

PROMELA (the language that SPIN uses to describe models). The current transla-

tion to PROMELA allows only simple properties of the protocols, like termination,

to be verified, but there is a way of increasing the number and the complexity of the

properties by providing a richer translation to the model checker. The contribution of

this work is considered to be significant since it allows the development of reliable

protocols by automated verification.

The use of a language which shares most of the techniques used in LCC for coor-

dinating agent-oriented web services is presented in [9]. This work describes how the

concept of languages based on process calculus can be used for the coordination of web

services. The idea of using these methods in web services leads to a comparison with

standardized markup languages for describing web services and especially DARPA

Agent Markup Language for Services (DAML-S) [21]. The comparison between the

two languages leads to following conclusions: DAML-S can be more expressive in

describe the structure of the services while the proposed approach is better in describ-

ing the interactions, the proposed language lacks the automatic discovery features and

finally the fact that DAML-S is mostly like a type definition language while the pro-

posed is more like a logic programming language. This comparison actually makes

clear the different concepts from which the two languages are derived. DAML-S is a

standard emphasising the use of typed specification for service discovery, while LCC

is an attempt to desrcibe service coordination in as style close to logic programming.

Hence these two are, to an extent, complementary.

Another piece of work that uses the MAP language (also used in [3]) for the verifi-

cation of multi-agent web services is presented in [4]. Since the strategy for applying

the model checking is from the theoretical point of view the same as in [3], the most

interesting technique introduced in [4], is the approach of constructing multi-agent

systems from web services. The approach that is used is the constructions of a close-

coupled MAS separate from the web services, in which each agent acts on behalf of a

web service. By coordinating the agent in the MAS, the coordination of the services

that they represent is achieved. This technique seems to be a good choice for the devel-

opment of agents based on web services since absolutely no modification is needed on

Chapter 2. The LCC language 10

the web service (it can be a simple web service described in a well known standard).

[5] is another case in which this approach for coordinating web services is adopted.

In this case, the objective is the design and enactment of e-science experiments which

involve a number of different web services to be accessed in a particular sequence.

2.3 Future directions of research in LCC

After describing some different approaches to some problems that the LCC architec-

ture is also involved, it is straightforward that there is no other effort to provide such a

general purpose mechanism for coordinating multi-agent systems. The only approach

that attempts to provide such specifications, is the EI architecture, which has several

shortcomings that we have already discussed. Therefore, the conclusion is, that LCC is

the most promising approach its kind at the moment. Some of its important advantages

are:

• the flexibility it provides by defining protocols at run-time,

• the fact that the agents participate in dialogues without having to adapt their

beliefs or to share any internal knowledge,

• the minimal requirements that an a agent must meet, in order to use the protocol

and

• the fact that the methods it employs are well known techniques from logic pro-

gramming, which have been studied for many years and therefore they are quite

efficient solutions.

All these features make LCC appropriate for the case of open, heterogenous systems

like the web. In these systems the minimization of the assumptions about the partici-

pants’ internal processes is the only choice and this is why LCC seems to provide an

architecture for the coordination in such systems.

There are a number of issues related to LCC that have to be further researched.

Most of these issues are raised in almost every publication of the series. The most

important of them are the following:

• The ability of the protocols to be adaptive. This is about allowing the agents

to modify the protocol in a safe way acceptable by all the participants, during

the dialogue. This will actually result in the evolution of the protocol as the

interaction goes on

Chapter 2. The LCC language 11

• The application of more sophisticated ways of constraint management

• The introduction of techniques to make the protocols fault-tolerant

• The verification of more complex properties of the protocols using model check-

ing

Continuing work is not limited to the issues mentioned above. Since this approach has

been applied in different ways, there is also work to be done on issues that have to do

with specific applications. Examples are the model-checking case and the e-science ex-

periment design. In the first one, the attempt to verify more properties of a protocol is

considered important and the addition of a translator that generates a protocol descrip-

tion from a workflow design in the second will be a significant achievement towards

an efficient solution for the specific problem. Since these observations are valid only

within the specific context of the problem, it is considered vital to be described at this

point. As mentioned before, most of them are highlighted in the relevant publications.

Chapter 3

Techniques editing

3.1 Techniques in Prolog

A programming techniqueis, as it is described in [20], a common to the programmers

code pattern, specific to a particular language, but irrelevant to the algorithm or the

problem domain, which is regularly used. The use of suchtechniquesis very common

in logic programming. Expert users in Prolog are aware of constructs like the ”accu-

mulator pair” and use them regularly. A good example, taken from [2], is to consider

the implementation of ”quick” reverse in Prolog:

rev([],R,R)

rev([H|T],R0,R) :-

rev(T,[H|R0],R).

The predicate above consists of two parts. The first one performs the recursion down

the list

rev([],...)

rev([H|T],...) :-

rev(T,...).

and the second one builds a list during the recursion (accumulator pair)

rev([],R,R)

rev(...,R0,R) :-

rev(...,[H|R0],R).

These two parts are Prolog techniques in the sense that they are common code patterns

used in wide variety of situations regardless the algorithm being implemented.

12

Chapter 3. Techniques editing 13

A methodology for constructing logic programs using techniques is proposed in

[19]. The key points of the method, as they are summarized in [2] are the following:

• The construction of the program is based on theskeleton, which determines the

control flow of the program.

• There is set of methods for performing simple tasks. These methods are called

additions.

• Additionscan be applied to the initial skeleton in order to obtain anextension.

• Extensionscan be composed to produce fully functional logic programs.

Skeletonsare used as the basis for constructing programs using this methodology.

The control the flow of the program in general. As it stated in [23], skeletons are basic

Prolog programs processing inputs in a simple way. The can also be refined futher, in

order to produce more complex programs. An illustrative example of a skeleton taken

from [23], is the following:

s([]).

s([X|Xs]):-s(Xs).

This is fould in Prolog programms when traversal of a list is required. We can see how

this skeleton is used as the first argument of the list reversal:

reverse([],R,R).

reverse([X|Xs],R0,R):-reverse(Xs,[X|R0],R).

Note how thereverseprogramm can be constructed by adding new arguments to the

clause. The role of the skeleton is to iterate the process by obtaining values from the

input and terminating the recursion according to the specified conditions.Techniques

can be applied to it in order to perform more complex operations.

In this methodology as it is adopted in [23], atechniqueis described as a sequence

of single-argument programs calledadditions. This can be done by isolating the argu-

ments and subgoals of which atechniqueconsists.Techniquesare applied on askeleton

by adding these arguments and subgoals in order to produce more complex programs.

An example illustrating these relationships is also presented in [23]. Consider atech-

niquefor counting the number of items during a loop:

Chapter 3. Techniques editing 14

t(...Count,Total):-

.

.

Total = Count.

t(...Count,Total):-

.

.

Count1 is Count+1.

t(...Count1,Total)

This techniquecan be thought as being composed be the following twoadditions:

q(Count):-

Var = Count.

q(Count):-

Count1 is Count+1.

and

r(Total):-

Total = Var.

r(Total):-

r(Total).

If the abovetechniqueis applied to the basicskeletonfor travesing lists, which we have

also described above, the result is the following Prolog program:

s([],Count,Total):-

Total = Count.

s([X|Xs],Count,Total):-

Count1 is Count+1.

s(Xs,Count1,Total).

This program essentially counts the elements of list given as the first argument. The

result of applying thetechniqueto the initialskeletonis said to be anextension.

3.2 Applications of techniques editing

There are several aspects of Prolog programming, in which these common pattern can

be useful. In [2], Prolog editing, automated program analysis and program tracing are

Chapter 3. Techniques editing 15

said to be fields, in which atechniquesbased approach can be usefully applied. We are

mainly concerned about the application oftechniquesin editing (Techniques editing).

There have been several attempts for developing an editor which enables the building

of programs usingtechniques. We are going to describe briefly two of these editors.

Note that we will refer to this description later, when trying to compare them with the

outcome of project.

Robertson’s editor, described in [6], follows the methodology described above.

It basically aims to help novices learn Prolog, by becoming aware of common pro-

graming techniques that Prolog experts exploit when writing programs The program is

constructed by applying different combinations of techniques on the initially selected

skeleton. A set of predefined skeleton and techniques are provided. These are repre-

sented using a simple notation proposed in [6]. Information about valid combinations

of clauses and about the mapping of arguments are included in the proposed represen-

tation. Other information aiming to help the user understand the effect of applying a

pattern is also stored. This allows the editor to provide guidance by suggesting ap-

propriate techniques for each case and judging the user’s decisions. by testing the

correctness of the program. The interface although it is not graphical, it is considered

to be very usable, providing all the information that is needed by its user. The library

of pattern is limited to a small set of skeleton and techniques. Despite the limitations

regarding the number of available patterns, the editor described in [6] is a valuable

implementation of thetechniques editingapproach.

The second techniques-based editor we are going to discuss, is named Ted and it

is extensively described in [1]. Techniques in Ted are defined as relationships between

the head and recursive arguments in the recursive clauses of a program. Clauses are

thought to constist of a combination of such techniques, sharing variables between

them. This approach is quite different from the skeleton-addition approach desrcibed

before. As it is pointed out in [2], there are some limitations about the patterns that can

be described in Ted. In particular, mutually recursive predicates and doubly recursive

clauses are not supported. Moreover, the allowed data-structures are limited to lists,

atoms and numbers. Although Ted has a graphical interface for applying patterns, it

does seem to provide the amount of information provided by Robertson’s editor. It

also checks the suitability of a specific pattern by checking the given constraints, but

the user is not guided through the steps of the refinement. Despite its limitations in the

representation of patterns, Ted demonstrates that techniques can be useful for teaching

Prolog to novice users. The study of both the editors suggests that a techniques-based

Chapter 3. Techniques editing 16

approach to editing has several advantages and should be applied in cases when a

sufficient set of skeletons and additions can be defined.

Chapter 4

Editing operations

4.1 Recognizing the problem

Although LCC has a lot in common with logic programming languages, there are sev-

eral differences which will make the effort of directly applyingtechniques editingin

the LCC case hard or even impossible. The most important of these differences is that

LCC is a process calculus. Its syntax is similar to logic programming, but the problems

it is supposed to tackle are different from those of logic languages. This means that

there is no guarantee that the specific patterns or even the whole method that has been

proved to be useful in the Prolog case will be appropriate for LCC. Moreover, we can

not be sure yet that useful frequently occurring patterns exist in LCC protocols. This

means that a new method particularly suitable for LCC might be designed based on

similar approaches in logic programming.

Another difference from related work intechniques editingis the purpose for build-

ing the editor and the whole method upon it is based. Existing Prolog editors aim to

help novices to get familiar with logic programming using common programming pat-

terns. In our case the goal is to provide a useful tool for knowledge engineers in order

to enable to the building of flawless protocols more easily and quickly than simply

writing the protocol in LCC. The use of patterns is expected to speed up the process of

building and reduce the number faults by reusing parts of protocols which are known

to be reliable. Although this difference in the objectives is not expected to affect our

effort as much as the fact that we are dealing with a process specification language, it

is likely that several decisions may be different than the ones taken in Prolog editors.

17

Chapter 4. Editing operations 18

4.2 The LCC case

4.2.1 Types of patterns

Since the patterns used in techniques editing based editors does not seem directly appli-

cable to LCC, the first step is to try to identify the different kinds of protocols involved.

After studying a number of existing LCC protocols and particularly the example pro-

tocols described in [9], [10] and [8], three kinds of interesting patterns were identified:

1. Skeletal, which describe the structure of a clause

2. Role refinement, which describe a clause in detail

3. Clause interaction, which describe the interaction between clauses

These patterns describe a clause or a set of clauses in variable detail and therefore we

expect to see a major difference in the frequency of occurrence for each type. It is also

the case that combinations of the above types may be useful in particular cases, but

it is generally true that defining a new pattern as a combination of existing ones will

make the new one too specific to have an acceptable level of repeatability. In the next

three sections we are going to describe the features of these types of patterns and the

role that they can play in assisting the process of building LCC protocols.

Skeletal patterns

The first type of patterns appearing in LCC protocols are the ones which can provide

early skeletons for a clause. Their purpose is to determine the general structure of the

clause and therefore the behavior of the clause in general. These patterns are quite

abstract in the sense that the details of a role are not specified. Only the flow of control

within the role definition is specified. They can be said to play a similar role with the

skeletons in thetechniques editingapproach. An example of such a pattern is presented

below:

a(R,x) :: (<def> then a(R,x))

or

null <- <con>

In this example,<def> statements represent definitions which are not yet specified

and<con> statements represent unspecified conditions. They can be filled with any

definition or condition respectively according to the LCC syntax.R is the role being

Chapter 4. Editing operations 19

defined in the clause,x is the agent identifier andnull represents the null message.

The pattern presented above represents a recursive clause and this is expressed by the

fact that the role remains the same. The recursion itself is not specified, nor is the

condition for terminating the recursion. The role of such a pattern is to define a clause

as a generic recursive clause. The details can be specified later either by applying

a more detailed pattern or by filling the missing parts manually. Such patterns are

expected to be rather useful due to the fact that many different clauses seem to follow

the same or at least very similar general structure. By experimenting with the detail, a

reasonable set of skeletal patterns with high repeatability can probably be constructed.

Role refinement patterns

The second type of patterns that we were able to identify, are more detailed and aim to

refine the initial skeletons in order to get a more precise definition of the role defined

by the clause. Several role refinement patterns can be applied to a skeletal pattern in

order to refine a clause. The result can be either a fully specified clause or a clause

which need to further manual refinement. An example is the following:

a(F(A1...An),x) :: (<def> then a(F(A1...An-1,An’),x))

or

null <- <con>

In this caseF represents the predicate of the role andA1...An are its arguments. The

predicateF remains the same denoting the recursive nature of the clause. The argu-

mentsA1...An-1 do not change as well. The fact that onlyAn is replaced byAn’

shows that the example represents a recursive clause in which the recursion in made

over one of its arguments. Comparing it with the skeletal example, it is obvious that

the role refinement describes the clause in greater detail. A pattern like that could be

applied to the skeleton presented before in order to specify that the recursion concerns

one of arguments. The detail of such patterns is a major issue, since it is closely related

with their repeatability (too detailed patterns can be too specific and therefore they will

occur rarely). It is also interesting to see how they should be related to skeletal patterns

in order to make their combination both effortless and efficient.

Clause interaction patterns

Unlike the first two types of patterns, clause interaction patterns involve more than one

clauses. They aim to capture common patterns of interaction between clauses such as

Chapter 4. Editing operations 20

message passing. They can be considered as skeletal in the sense that they can be used

as a skeleton for building the agents involved, but they can also be rather detailed in

specifying the messages. An illustrative example of such a pattern is the following:

a(R1,x) :: <def> then

M=>R2

a(R2,y) :: M<=R1 then

<def>

As in the skeletal case,R1 andR2 represent the agent roles.M is the message which is

sent by the agentR1 and received by agentR2. The general structure can be described

as an interaction in whichR1 sends a message after doing some processing andR2 will

do something else after receiving that message. In this example the message and the

agent roles are abstract but they could have been more specific. Patterns like this can

be very useful in LCC protocols. They are valuable both in the sense that they can

save effort required for building the protocol (the effort for building the above clauses

manually is not insignificant) and because of the increased frequency in which they

appear in protocols (every message has to be caught by some agent).

4.2.2 Use of patterns in LCC

There are two points about patterns in LCC that are worthwhile to discuss further. The

first one is that the distinction between different types of patterns is not very clear.

Considering the examples mentioned before, we can observe that the role refinement

example pattern can be used as a skeleton for building an agent from scratch. The

increased detail of the role refinement patterns will probably reduce the possibility that

such skeletons will occur occasionally, but if so they are very useful since we can get a

more detailed definition in only one step. The patterns seem to be distinguished more

by the level of their detail than by its role in building the protocol. The conclusion

drawn by this observation is that it is probably a good decision not to distinguish the

different types of patterns in such a way that restricts their usage in protocols. Espe-

cially the possibility of using detailed patterns as skeletons is likely to be worthwhile.

The second point is the balance between the detail of the patterns and the frequency

of occurrence. It is true that more detailed patterns are more useful then abstract ones in

the sense that they can do more for us when they are applied. The problem in that case

is that if a pattern becomes too specific it is less likely to occur frequently. It is therefore

Chapter 4. Editing operations 21

obvious that the optimal level of detail for each pattern type has to be determined. A

decent solution is to experiment with different levels of detail and evaluate the result

by counting the frequency with which the patterns occur when trying to build a new

protocol from scratch. It is rather intuitive that in order to do that the method and the

tool, which are going to be built, have to provide a convenient way to define patterns.

We should bear that in mind when making decisions about them.

4.3 A method for structured building of LCC protocols

4.3.1 Design of a suitable method

After considering the observations made about the types of protocols appearing in

LCC and their use in building protocols, the result was a pattern-assisted incremental

method. It is said to be pattern-assisted in the sense that it does not enforce the use

of patterns in the process of building. Patterns are used by the knowledge engineers

only in cases where they are expected to reduce the required effort according to their

judgment. The method is basically an incremental approach in which missing parts of

a clause can be filled in with statements according to the LCC syntax. This is flexible

in the sense that the engineer is allowed to build everything that would have built when

writing the protocol by hand. The tradeoff is that the effort is probably also comparable

with the case of writing protocols by hand. This is where patterns are expected to assist

the process of building by reducing the effort required. The application of a pattern in

any stage of the development (either in specifying an initial skeleton or in refining the

role) will save us from considerable number of incremental steps. It is quite obvious

that a combination like this will be able to give us the required flexibility while making

in the same time the process of building easier and effortless.

The reason for choosing such an approach has mainly to do with the objectives

of the project. As we have stated before, one of the reasons that motivated us was the

lack of support to LCC from the engineering point of view. It is therefore expected that

the outcome of the project will have considerable value for the knowledge engineers

who wish to use the LCC approach for developing multi-agent systems. A pure pattern-

oriented approach would probably be too risky in that case, since it is not yet very clear

what kind of patterns are suitable for LCC and how useful they can be. By choosing

to base our work in an incremental approach assisted by patterns when possible, we

ensure the value of the outcome from the knowledge engineer’s point of view (the

Chapter 4. Editing operations 22

method is very likely to be more efficient than the manual building of protocols by

hand) while providing a method which will allow us to experiment with patterns and

their use in LCC.

As mentioned before, the role of patterns in the method is to assist the building

of the protocol by the reuse of common programming LCC techniques. The patterns

supported by the method correspond to the types identified before. There is no strict

distinction between them in the sense that it is up to the engineer to decide how a

specific pattern will be used. The reason for that has already been discussed and it is

considered an advantage that the engineer has this kind of freedom. Another feature

supporting the flexibility of the tool is the convenient way in which patterns can be

specified and stored for later reuse. The same incremental approach used for building

the protocols is used for specifying custom patterns. In fact, patterns are unfinished

clauses or sets of clauses which are stored at the right level of abstraction in order to

be appropriate for reuse. This approach to the use of patterns seems to serve the goal

of reducing the effort for building protocols quite well without violating the flexibility

of the method.

4.3.2 Applying the method to a structured editor

The ideas described above has been implemented and the result is an editor with a

graphical interface providing the required functionality. We prefer not to get into the

details of the interface and its implementation at this point. Our aim is to demonstrate

how the method can be used in order to build an example clause. We will use an

illustrative example which demonstrates the different steps and operations required for

building protocols using the proposed method. The example is taken from [9] and

represents the role of the locator in the protocol. The locator in the example protocol

interacts with the finderF in order to obtain the Web locationsL of people in setSby

asking recursively the finderF for the locationXl of personXp. The clause, as it is

Chapter 4. Editing operations 23

presented in [9], is the following:

a(locator(F,S ,L),L) ::
ask(locate(Xp)) ⇒ a(f inder,F) ←

S = [Xp|Sr]∧L = [Xl |Lr] then

in f orm(located(Xp,Xl)) ⇐ a(f inder,F) then

a(locator(F,Sr ,Lr),L)

or

null ← S = []∧L = []

(4.1)

For the needs of the scenario we will assume that two patterns have been defined and

are available for use. The first one, which is going to be used as a skeleton, is presented

below:

a(<func1>(<arg1>,<arg2>),<arg5>)::

(<def6> then

a(<func1>(<arg1>,<arg6>),<arg5>))

or

(<def4>)

The<funcX> statements represent predicate names which are left to be specified later.

This is essential when defining patterns since the names given to variables and pred-

icates must be specified in the context of the protocol in which the pattern is being

applied to. Note that the use of<func1> in both the head of the clause and the agent

definition, places the constraint that these predicate names must be the same. In other

words, the pattern defines a recursion since it calls the same role with different argu-

ments. The number of arguments involved in the recursion will be determined by the

difference between their argument lists.

The <argX> statements are somehow different from the predicate names. They

represent arguments which have not been specified yet. An argument can be specified

as a variable or constant, a predicate, a Prolog-like list or a sequence of other arguments

(the sequence<arg1>,<arg2> is itself an argument). Considering all these, the pattern

requires that the two agent definitions (the one in the head of the clause and the one

in the definition) must have a common part of their argument list (since<arg1> can

be an argument list itself) and the rest of it should be different. The fact that<arg5>

(the identifier) is common shows that the agent taking the role will be the same again.

Chapter 4. Editing operations 24

Thinking in terms of a recursion, this structure is the skeleton of most recursive clauses

in LCC. <arg1> represents the arguments that are not affected by the recursion and

<arg2> represents the arguments that will change until the next call in order to provide

the recursion. The skeleton does not specify the stopping condition of the recursion. Its

purpose is to provide a generic structure which will be later refined by another pattern

of by incrementally specifying its unspecified parts.

The second pattern contains some more detailed definitions and aims to refine the

initial skeleton:

a(<func1>(<arg1>,<arg2>),<arg5>)::

(<def12> then

<func3>(<arg7>) => a(<func2>(<arg6>),<arg7>)

<- (<arg1> = [<arg9>|<arg10>] &&

<arg2> = [<arg12>|<arg13>]) then

<def10> then

a(<func1>(<arg10>,<arg13>),<arg5>))

or

(null <- (<arg1> = [] && <arg2> = []))

It represents a clause taking two lists as arguments. The clause recursively sends a

message for each element in the lists. There is no constraint on how the elements of

the lists will be used. It just specifies that the role will send messages somewhere for

as long as the lists are not empty. A pattern like this could have been used as a skeleton

in a case where we need only the two lists to be the arguments for the role. Since this

constraint is too restrictive, it is considered useful to provide mechanisms for applying

such a pattern on a more generic skeleton. Other patterns can then be applied to same

skeleton in order to refine the role further. We are going to show how the second pattern

can be applied to first in order to get a more detailed definition for the role shown in

4.1 using the functionality provided by the editor. Finally, we will show how the result

of combining the patterns can be refined using the incremental approach to produce the

full definition of the clause. The full set of screenshots taken from the editor during

the process of building the clause are provided in appendix A.

The first step in the process of building the clause is to use the stored skeletal

pattern in order to obtain an initial skeleton. Any set of clauses can saved and reused

as a pattern. In our scenario the skeletal pattern is saved as ”recursion” and the detailed

Chapter 4. Editing operations 25

Figure 4.1: The initial skeleton

Figure 4.2: The resulting clause after adjusting the skeleton

pattern as ”2ListRecursion”. Using the interface of the editor we can add a new clause

to the protocol based on a saved pattern. The interface operations required are shown

in figures A.1 to A.4. The result at this point, shown in figure 4.1, is a clause similar to

the skeletal pattern.

The next step is to apply the detailed pattern to the initial skeleton. Before doing

that, we will have to manually edit the skeleton in order to meet our demands. In

particular, we have to replace<def4> with a sequence of definitions in order to make

the skeleton appropriate for the target clause. It is obvious at this point how the method

combines the incremental building of protocols with the use of patterns in order to

achieve its goals. The required operations are shown in figures A.5 to A.7 and the

result is shown in figure 4.2.

At this point we are ready to apply the role refinement pattern to the existing clause.

This will be done by replacing parts (basically arguments and definitions) of the skele-

ton with others from the detailed pattern. In particular,<arg4> ,<def7> and<def6>of

the skeleton must be replaced by<arg11>,<arg12> , the definition describing the con-

ditional message and the definition representing the stopping condition respectively.

Chapter 4. Editing operations 26

Figure 4.3: Preview the pattern with the new numbering

Figure 4.4: The clause after applying the pattern

Note that since the context in which the patterns were constructed and saved is differ-

ent from the one they are used in, the numbering of the statements in a pattern may be

conflicting with the existing clauses. This is why when a pattern is being applied, the

numbering of its contents is adjusted to the existing protocol. To avoid any misunder-

standings, the resulting pattern, after making those changes, is presented to the user in

a preview window right after the file is selected. In our example, the role refinement

pattern after these changes is shown in figure 4.3.

Given the changes in the numbering shown in figure A.10, the result after replac-

ing the relevant arguments and definitions of the skeleton with the ones from the role

refinement pattern is shown in figure 4.4.

Chapter 4. Editing operations 27

Figure 4.5: The result after completing the application of the detailed pattern

Figure 4.6: The result after the addition of the message

The precise procedure for loading the pattern and making the above mentioned

mappings is shown in figures A.8 to A.14. There is one more replacement which must

be done manually in order to completely apply the new pattern. It is the replacement

of <arg8> with <arg21>,<arg22> which are the remainders of the two lists. An

obvious improvement to the editor, in order to avoid this step, is to allow the mapping

of definitions from the detailed pattern to existing specified definitions of the skeleton.

In the specific case, it would be useful to be able to map the agent definition in the role

refinement pattern to the one in the skeleton. The mechanism for doing that would be

similar to the one for mapping the heads of the pattern clauses and is included in the

list for future improvements. The operations are shown in figures A.15 to A.18 and the

result is shown in figure 4.5.

The next step after applying both patterns is the incremental refinement of the

clause. Particularly, we will have to refine the message added by the pattern and to

add the second (incoming) message by replacing<def8>. For the refinement of the

outgoing message we need to specify<arg18> as the predicatelocate<arg20>. The

incoming message can be added by replacing<def8> with an appropriate incoming

message definition. The full set of screenshots for these transformations are shown in

figures A.19 to A.33 and the result is in figure 4.6. The clause is essentially finished at

this point. The last step is to replace the abstract statements with more specific ones.

In particular,<func> and<arg> statements must be replaced with named functions

and arguments according to the target clause. An example of the procedure for doing

so is described in figures A.34 to A.35 for<func> statements, while the procedure

Chapter 4. Editing operations 28

Figure 4.7: The final result

Figure 4.8: The final result

for replacing arguments has been shown before. Note that<arg15> is a special case

because the role of thefinder takes no arguments. This can be denoted by specifying

<arg15> as an empty argument list. The final result after naming all the unspecified

parts of the clause is presented in figure 4.7.

An interesting feature of the editor which is not directly related to the process

of incrementally building clauses, is the validation of the protocol. The validation

checks aspects of the consistency of the message and agent definitions included in

the protocol. In particular, it is ensured that for every outgoing or incoming message

there a corresponding incoming or outgoing message respectively and for every agent

definition appearing in the protocol, the clause defining the relevant role exists. This

is considered an important feature since it is known that many errors occur due to

this kind of inconsistencies when building LCC protocols manually. In our example,

the validation of the protocol returns the result appearing in figure 4.8. We can see

the error messages produced since there are no corresponding messages for the ones

mentioned in thelocatordefinition and the role offinder is not defined in our protocol.

It is obvious that the validation feature can be a useful tool for the knowledge engineers

especially when building lengthy protocols with many roles.

Chapter 4. Editing operations 29

Although the example described above does not illustrate the full range of func-

tionality covered by the editor, it is considered to be a good scenario for demonstrating

the use of our method. The editor does not enforce the application of patterns in the

way we have described and therefore it is up to engineer to decide how and to what

extent the patterns should be used in a particular case. Different degrees of pattern us-

age may be appropriate for different kinds of clauses. The method we have described

seems to be flexible enough from the engineering point of view, while at the same

time it provides us a tool to experiment with patterns in LCC. It is true that patterns in

LCC may also exist at a different level of abstraction , which is not supported by the

described method. However, we believe that the currently supported pattern types and

the proposed method in general, provide a pragmatic initial approach.

Chapter 5

Implementation issues

5.1 Design of an editor implementing the method

At this point, we discuss some issues concerning the implementation of our editor. In

the example scenario presented in 4, we demonstrated how the method can be applied

without getting into the details of the underlying implementation. We used the inter-

face and its operations to construct the example clause, but it is not clear yet how the

objectives were accomplished at the implementation level. The purpose of this chapter

is mainly to discuss how the internal structure of the editor supports the operations

shown before and how the interface uses this structure to achieve the desired result.

Before doing that, we discuss some key engineering decisions made. The first one

is the choice of platform and programming language, in which the editor would be

implemented. Our decision was to use Java as the programming language. Because

of its platform independence, its fully object-oriented nature and the convenient way

it provides for building graphical user interfaces using SWING, Java is particularly

suitable for this project. We will briefly discuss how our effort can benefit from these

features of the language.

Given the fact that Java is a cross-platform language providing the required tools for

the development of the editor, we consider that it is preferable not to bound our work

to a specific platform, unless there is another strong factor discouraging us from doing

so. The object-oriented software development is the dominant approach for building

software these days and therefore it is considered an advantage to use a language which

natively supports such an approach. Finally, the existence of native language libraries

for building graphical interfaces is maybe the most important of the factors leading us

to use Java. Since the graphical user interface has a key role for the value of the editor

30

Chapter 5. Implementation issues 31

from the knowledge engineer’s point of view, the convenient way in which Java allows

the implementation of graphical interfaces without sacrificing portability, is probably

the main reason for choosing it.

Apart from the advantages described above, Java has also some major shortcom-

ings. The most important of them are definitely performance and memory efficiency. It

is generally accepted that Java is considerable slower than conventional compiled lan-

guages like C++, while it also demands greater amounts of memory. Although these

disadvantages are not minor, they are not expected to affect our work since our software

is not considered to be performance critical or particularly memory consuming. Since

we estimate that the main disadvantages of Java will not cause any major problems in

our case, there is probably no strong argument against it. In any case, the choice of

language is not a key decision in our work. We wish to focus mostly on the method

for building LCC protocols and the interface providing the required operations. Any

decent choice seems to be good enough for our purpose and Java is surely one of them.

Another interesting issue is the representation of the protocols internally. This is

a key issue since it will affect the outcome much more than the choice of language

described before. A good representation must be both flexible enough to support the

operations required by the method and simple enough to be implementable with rea-

sonable effort. Moreover, the complexity of the code needed to implement it should

be kept at a reasonable level. A solution for this problem is to use a class structure

describing the LCC syntax. This choice allows us to build an expressive representa-

tion using an object-oriented approach, which can ensure that the required code will

be well structured. The fact that Java is an excellent tool for deploying object-oriented

solutions is also a strong argument for our decision. Using the mechanisms provided

by Java, we have built a fairly simple object structure adequate to express the full range

of protocols written in LCC. Other solutions for representing the LCC protocols may

also exist, but objects and inheritance seem to be beneficial in terms of simplicity and

quality of structure of the resulting code. The correctness of our choice will be more

obvious in the next sections where we describe a natural way to represent LCC syntax

by a hierarchy of classes.

In the following sections we have a closer look at the class structure, the interface

and its relation with the underlying structure. Finally, we briefly describe the internal

operations required for each step of the example scenario.

Chapter 5. Implementation issues 32

Figure 5.1: The class structure

5.2 Internal structure of the editor

5.2.1 A class structure based on LCC syntax

One of the key components of the implemented system is the representation of the

protocols. As we have argued before, we have chosen to built a class structure which

represents the abstract LCC syntax shown in figure 2.2. The class structure extensively

uses inheritance, and polymorphism is also widely used in order to achieve its goals.

A class diagram describing the hierarchy of classes is shown in figure 5.1. The figure

gives an abstract illustration of the class structure. Its details such as methods or other

members of each will be discussed later when necessary. Before that, there are several

issues concerning the structure and its relation to the syntax of LCC which would be

worthwhile to discuss. The class structure in general is derived directly from the syntax

of the language. The central idea is similar to the one behind thecomposite design

pattern. The idea in thecomposite design patternas it presented in [13], is to represent

part-whole hierarchies by composing the objects into tree structures. The goal is to let

clients (the graphical interface in our case) handle objects and compositions of objects

uniformly. The essence of the solution suggested is to let composite and leaf object

to inherit from a common class (the class ”Component” in [13]). The result is that by

manipulating the composite and leaf objects as ”Component” objects we achieve to

uniformly treat each object ignoring its actual type.

We do not actually claim to have used the composite pattern as described in [13].

Chapter 5. Implementation issues 33

Figure 5.2: The composition of definition

What we have done is to use its basic idea for the purposes of our class structure.

In particular, the classes ”Definition”, ”Condition” and ”Argument” play the role of

”Component” in the composite case. For the first two cases it is quite clear from

the LCC syntax why such an approach is suitable. ADn in LCC can be anAgent,

a Message, a sequence, choice or parallelism of definitions. In this case,Agentand

Messageare leafs in the sense that they do contain other definitions, while the rest are

composite since they consist of other definitions (figure 5.2).

TheC case is similar sinceTermcan be considered as leaf while the conjunction

and disjunction are composite (figure 5.3). It is worth explaining why the ”Primitive-

Condition” is introduced instead of having the class ”Term” directly inheriting from

the ”Condition” class. Note that the LCC syntax definesTermas a possible instance of

aC. The ”Term” class can also be an argument, the role of which will be explained in a

while. Since Java does not support multiple inheritance we had to choose a class from

which ”Term” would inherit. We have chosen to define ”Term” as a specialization of

the ”Argument” class and therefore we introduce ”PrimitiveCondition” as an interme-

diate class having a ”Term” object as its member. There are no strong arguments why

the decision was not the opposite, but we believe that is more natural to consider the

Termas a special case of an argument than as aC.

The ”Argument” case is somehow different in the sense that the composition is not

obvious in the LCC syntax. The reason is that the syntax shown in [10] is not an ex-

haustive one. However, it is made clear thatTerm, which is not defined in 2.2, follows

the composition of a term in the Prolog syntax. Since we do not wish, at least at this

stage, to get into the details of Prolog syntax, the composition of theTermhas been

determined by its use in existing protocols. The result can be seen in the class structure

Chapter 5. Implementation issues 34

Figure 5.3: The composition of condition

shown in figure 5.4. As you can see, a ”Term” object consists of an ”AbstractFunction”

and an ”Argument” object. The concept of function, in general, represents the name

of a predicate (e.g. in the predicateFather(John) Father is considered to be the func-

tion). It is used here in conjunction with the ”Argument” object in order to represent a

predicate. The role of the ”AbstractFunction” object and its difference with ”Function”

is not clear at this point, but we will get back to this issue later. An argument object

can be either a list of arguments (”ArgList” class), a constant or variable (”Constant”

class), a Prolog-like list (”PrologList” class) or anotherTerm. Figure 5.4 shows how

class inheritance and composition is used to express such a structure. The fact that any

of the specializations of the ”Argument” class must be treated uniformly as arguments

of a predicate leads us use the ”Argument” class in the same way as the ”Component”

class in thecomposite design pattern.

A point which has not been made clear yet, is the role of ”AbstractFunction”.

The classes ”Definition”, ”Condition” and ”Argument”, apart from playing the role

of ”Component”, are also used for another purpose. As we saw in the example shown

in 4, there are cases in which parts of the protocol are left unspecified. This feature

is essential for enabling the development of patterns using the same representation of

protocols. The definition of such statements at the object level can be done by creating

instances of the abstract classes ”Definition”, ”Condition” and ”Argument” for the cor-

responding types of statements. This is a good solution since we are taking advantage

of existing classes, thus keeping the class structure as simple as possible. The problem

with the concept of function is that there exists no abstract class to play the role of

an unspecified function. This is why we introduce the class ”AbstractFunction” from

which the ”Function” class inherits. By creating an instance of ”AbstractFunction” we

Chapter 5. Implementation issues 35

Figure 5.4: The composition of term

are basically defining a function whose name has not been specified yet.

There are still some classes appearing in 5.1, which have not been discussed yet.

Two of them are the ”ConditionalMsg” and ”ConditionalAgent” classes. As you can

see from the class diagram they inherit from the ”Message” and ”Agent” class and they

represent conditional messages and conditional role transitions respectively. For the

”Message” case, the existence and form of the conditional message is obvious. For the

”Agent” case, it was the study of existing protocols which revealed the need of having

conditional transitions to agent roles. Both classes are implemented by inheriting the

functionality of the relevant parent class and adding a ”Condition” object as a member

of the class. Finally, the last two classes which have not been mentioned yet, are the

”Clause” and ”Protocol” classes. The role and definition of both classes is easy to

guess from the syntax of the language. The ”Clause” class consists of the head of the

clause, which is basically the agent role being defined, and the definition for the role.

The ”Protocol” class is nothing more than a set ”Clause” objects, defining the agent

roles involved in the protocol.

An interesting observation about several classes, is that some members of them are

defined as abstract types (the classes ”Definition”,”Constant”,”Argument” and ”Ab-

stractFunction” are refered as abstract since can be specialized as other types), while

specializations of them seem to be more suitable according to the syntax of LCC. An

illustrative example is the ”ID” member of the ”Agent” class. According to the syntax

Chapter 5. Implementation issues 36

of the language, as it is presented in 2.2, the identifier of anagentshould be aconstant,

which more or less corresponds to the ”Constant” class. However, we can see that the

”ID” member of the agent class is declared to be an ”Argument”. The reason why

the abstract type is chosen, is to enable these fields to be filled with objects denoting

unspecified statements. In our example, the result is that the ”ID” can be filled either

with a ”Constant” object defining the identifier of the agent or with an ”Argument”

object, which can be later substituted with a constant. If ”ID” was defined as a ”Con-

stant” object, no way to define an unspecified agent identifier would exist. The class

structure does not restrict the use of other types deriving from ”Argument” and this is

less than desirable.

The reason why we did not choose to refine the structure in order to apply such

constraints, is to keep it as simple as possible. Increasing the complexity of the struc-

ture at this point will make the possible changes, which may arise from the process

of experimenting with patterns, much harder. Keeping a flexible structure, which can

support the full range of statements that may come up when building patterns, is ex-

pedient. Moreover, this kind of constraint can be applied by the interface of the editor

at any time and with reasonable effort. Note that this is the strategy we followed in

several decisions throughout our work. As it will extensively be discussed in 6, there

is a lot of interesting future work to be done on the editor and therefore we wish to

keep the design as flexible as possible during the process of revealing the role and use

of patterns in LCC.

5.2.2 Implementation of basic operations

After discussing the structure of the class hierarchy and the reasons which lead us to it,

the next step is to describe how this structure of classes implements the basic operations

required for the editor. In order to do that, we first have to identify the required set of

operations. After experimenting with several different primitive operations for the

classes, the final set of them, which is adequate to support both protocol and pattern

building, consists of the following:

• Printing statements and the protocol in whole

• Replacing statements with others

• Retrieving sets of statements of the same type, included in the protocol

Chapter 5. Implementation issues 37

Although the list above is quite short, it is adequate for supporting the full set of op-

erations provided by the interface. In particular, if any class included in the diagram

shown in 5.1 can successfully return its textual representation, check its members and

replace them with a given object if necessary and return the list of statements of a

given type which are included in it or its members, we can then built an editor which

provides the functionality shown in the example scenario of 4.3.2. The way, in which

these primitive operations are combined to provide the visible result, will be discussed

later in this chapter. First, we would like to take a closer look on how these operations

are implemented by the class hierarchy.

An approach which has been extensively used for providing the required func-

tionality, is the use of polymorphism. This is expected since the whole idea of the

composite design patternis based on polymorphism. The case of printing the proto-

col on the screen is illustrative. Every class representing a statement, has a member

function calledtoString(). The leaf objects, such as ”Constant” objects, imple-

ment the method to return their simple textual representation (e.g. ”Constant” returns

just the name of the constant or variable). Composite objects should return their tex-

tual representation by getting asking from their member objects to return theirs and

combine them appropriately (e.g. an Agent for example should return something like

"a("+role.toString()+","+ID.toString()+")" in Java syntax). Polymorphism

ensures that we can call thetoString() function of a ”Definition” (or any other ab-

stract type) object and the get the correct result since the relevant code according to the

actual type (”Message”,”Agent”,”Sequence”,”Choice” or ”Parallel”) will be executed.

The same approach is more or less used for the other two basic operations as well.

For the replacement case, each class checks if the statement to be replaced belongs to

it and then calls the same method of its members. The result is that all the objects (and

therefore the statements) in the protocol are recursively checked and all occurrences

of the given statement are replaced. In order to achieve that, for each statement type

(”Definition”, ”Condition”, ”AbstractFunction” or ”Argument”) all classes implement

a method for replacing statements of this type (e.g.

void replaceDefinition(Definition oldDef,Definition newDef)

for definitions). The case of retrieving all the statements of a given type is similar. All

classes implement a method for each type of statements that we want to retrieve, taking

as an argument, a list of objects of this type (e.g.

void getDefinitions(List<Definition> defs)

Chapter 5. Implementation issues 38

for definitions). This method checks if this object (the one which owns the method

being executed at a given time) is of the relevant type (e.g. for thegetDefinitions

method, it checks if it is a definition itself) and if so, adds itself to the list. The ”Pro-

tocol” object provides a method for returning a list of the statements to the client. It

creates an empty list and then asks from all its ”Clause” objects to fill that list. The call

recursively reaches every statement in the protocol, in the way we described before.

The result after traversing all the statements is that the list contains all the objects of

the given type. These three basic operations is essentially all that is needed by the inter-

face in order to accomplish its objectives. The exact way in which they are combined

will shortly become clearer.

5.3 A Graphical User Interface for protocol building

5.3.1 Description of the graphical interface

A major part of the implemented system is the graphical interface of the editor. The

role of the interface is important for the goals of the project and it is therefore in-

teresting to briefly discuss its design. As we have stated before, the interface was

implemented using SWING, which is native Java library for building GUIs. We do not

wish to get into the details of the implementation at the code level, as nothing really

innovative is involved there. On the other hand, its design was a big issue during the

development of the editor, as we had to ensure the efficiency of the protocol build-

ing process. The following discussion will focus on the design of the most important

forms, since some of the forms are rather intuitive in terms of design and functionality.

The central part of the interface is the main display shown in figure 5.5. The menu

of the window consists of three groups of items:

• theFile submenu, which provides access to the functionality for starting a new

protocol, opening an existing one and saving the current protocol

• theProtocolsubmenu, allowing the addition of new clauses, the replacement for

all kinds of statements, the reordering of argument lists, the validation of the

protocol, the deletion of the selected clause and the replacement of a definition

with an unspecified one and

• thePatternssubmenu, which allows the user to save a set of clauses as a pattern

and apply a saved pattern either as a skeletal or as a refinement of an existing

Chapter 5. Implementation issues 39

Figure 5.5: The main window

clause

In most of the above cases other forms are called to provide the actual functionality.

In fact, the only part of functionality implemented directly on the main window is the

one involved in theFile submenu. Apart from the main menu of the editor, the main

window is used for the visual presentation of the protocol. On the upper left side of the

window there is a list of the agent roles defined so far. When clicking on an item of the

list, the definition for the selected role is presented on the upper right side. Finally, the

lower part of the screen is used to show the error messages produced by the validation

process.

The next display we are going to discuss is the one for replacing unspecified defi-

nitions with other definition statements. Its layout is shown in figure 5.6. The user can

select the definition to be replaced from the drop down list on the top of the window

and the type of the replacement by selecting one of the available types. If the selection

is a composite definition (sequence, choice or parallel), the definition is replaced by an

object of the selected type. If the definition is to be replaced by a message or agent,

then other forms allowing the user to build them will be called. The result returned

from the relevant window will then replace the unspecified definition. The window for

building a new agent definition is shown in figure 5.7. The check box on the top of

the window allows the user to select if the transition to defined role is conditional. The

Chapter 5. Implementation issues 40

Figure 5.6: The window for specifying definitions

Figure 5.7: The window for building agent definitions

Chapter 5. Implementation issues 41

Figure 5.8: The window for building message definitions

panel below that is for specifying the role of the agent. It can either be unspecified

(a ”Term” object with unspecified function and unspecified argument) or the window

for specifying a term can be called by pressing the button beside the text box showing

the term. In the second case, the ”Term” object returned by the window is shown in

the text box. On the bottom of the display there are three options for specifying the

ID of the agent. The ID can be either an already defined constant, a new unspecified

argument or a new constant. In the later case, the window for building new arguments

will appear in order to build and return a new object. Note that the agent window is

also used for building a new clause. The only difference is that the returned ”Agent”

object is used for the head of the clause. A new unspecified definition is used as the

body of the clause.

The other window, which can be called from the definitions window, is the one

used for building message definitions (figure 5.8). At the upper left part of the display

the user is required to define the agent sending or receiving the message, by calling the

agent window we have described just before. Beside that, the content of the message

has to be specified by calling the window for building terms. At the lower part the

direction of message the its specific type (conditional or not) can be chosen. By not

specifying the agent and the content of an outgoing conditional message, the user can

build anull message statement.

There are two forms which have already been mentioned and would be worthwhile

to discuss. The first is the window for building terms and is shown in figure 5.9. The

Chapter 5. Implementation issues 42

Figure 5.9: The window for building terms

Figure 5.10: The window for building arguments

general approach to the design of the display is similar to the one described in the

agent window and is generally adopted for designing the forms of the editor. On the

top of the display the user can specify the function of the term as an existing, a new

unspecified or a new named function. Below that part, the argument can be specified

in a similar way. The only difference is that the argument window is used in order to

define a specific argument.

The second window is one for building arguments. Its layout is shown in figure

5.10. The argument can be specified as a constant, a list (in the Prolog sense), a term

or a sequence of arguments. In the constant case only the name of the constant has

to be provided. For the other three options the relevant window for building each

statement has to be called. Apart from the term window, which has already been

discussed, the two other forms are shown in figures 5.11 and 5.12. As far the list

Chapter 5. Implementation issues 43

Figure 5.11: The window for building arguments

Figure 5.12: The window for building arguments

window is concerned, the layout can easily be guessed considering what has already

been discussed. The head and the tail of the list can be specified in a similar way.

They can be either an existing argument, a new unspecified one or a new constant.

The argument list window is somehow different from the others. At the rightmost

part, there is a list presenting all the arguments which have already been added to the

list. The argument specified on the left part of the display can be added to the list by

pressing the ”Add” button. The options for the argument are the same as those in the

term window.

The next window we are going to discuss is the one for replacing abstract con-

ditions (figure 5.13). Its design is similar to the one for replacing definitions. The

conjunction and disjunction options are handled by the window itself since no addi-

tional information is required (replaces the selected condition with a conjunction or

Chapter 5. Implementation issues 44

Figure 5.13: The window for replacing unspecified conditions

disjunction of unspecified conditions). For the case of specifying a condition the win-

dow shown in figure 5.14 is called. A condition statement can either be in the form

of a predicate (e.g.available(T)) or in the form of an equality (e.g.S= [H|T]). This

can be determined by choosing the appropriate option on the top of the window. Right

below that, the user can specify the term in the case of a predicate condition. We have

already discussed the window which is to used to build terms 5.9. At the lower part of

the display the both sides of the equality can be specified. The available options are

the usual apart from the right hand side, which can be a newly defined list. The list can

be specified with the relevant window shown in 5.11. Note that according to the initial

type selection, only the corresponding part of the display can be used.

Considering the design approach of the forms presented so far, it is rather easy

to guess how the forms used for replacing unspecified functions and arguments look

like. The first one allows the user to select the unspecified function and specify it as

an existing one of as a new by specifying its name. In the arguments case, the selected

argument can be specified either as an existing argument or in a way identical to the

case of building arguments (figure 5.10). The selection of the unspecified statement

can be done as in the definition window in both cases.

It is not worth discussing the rest of the forms called from theProtocolsubmenu

of the main window in detail, since their design and functionality are rather intuitive.

We would just like to mention that there is a window for reordering the arguments

of an argument list and one which allows the user to select a definition in order to

replace it with an unspecified one. The first one is useful as the application of patterns

does not ensure that the argument lists of two occurrences of the same role will be in

the same ordering. The validation process checks the number of arguments but the

Chapter 5. Implementation issues 45

Figure 5.14: The window for replacing unspecified conditions

ordering is not checked anywhere. It is up to the engineer to ensure the consistency

of the argument list as far as the ordering is concerned. The second window is a tool

for correcting errors. The user can select a faulty definition and replace it with an

unspecified one, which can then be defined again correctly. Finally, the validation

feature and the functionality for deleting the selected clause do not require separate

forms and are implemented directly on the main window. In the first case, the relevant

method of the protocol object is called and the result (a list of errors) is shown on the

bottom of the main display. The deletion of a clause is done by deleting the highlighted

clause in the list on the upper left part of the main window.

The last part of the graphical interface is concerned with the functionality supported

by the thePatternssubmenu of the main window. The saving of a set of clauses as a

pattern and the application of a pattern are not really interesting to discuss from the

interface point of view. In the first case, a simple window to select the clauses to be

included into the pattern is initially used. The next step is to select the file, in which

the pattern is stored, using a common file chooser. For the second case, the file is

initially selected and then the pattern is applied to the protocol after being shown in

Chapter 5. Implementation issues 46

Figure 5.15: The window for mapping the argument list of the pattern to the one of the

existing clause

a preview window. The case which interesting to discuss is the use of a pattern to

refine a skeleton. The first two steps of this process are similar to the ones of applying

skeletons. The only difference is that in this case the user is required the clause to

which the pattern will be applied. After the confirmation in the preview window, the

display shown in figure 5.15 is presented to the user. The role of this window is to

provide a mapping between the head of the existing clause and the one of the pattern

clause. In particular, the argument lists of the two agent roles must be merged in

order to provide the argument list of the resulting role. The drop down list at the

top of the display includes all the arguments of the role in the pattern. The selected

argument from this list can be mapped either to an argument from the argument list of

the existing clause or to a new argument, which will be added to the list. Note that we

do not require that all elements of the argument list are mapped. This choice allows

the partial application of a pattern and it can be useful when trying to apply a pattern

which is not perfectly suitable to the specific case.

After confirming the choices in the window shown in 5.15, another window is re-

quired to complete the process of applying the pattern (figure 5.16). This one provides

the functionality for replacing unspecified definitions from the existing clause with

definitions from the pattern. The left part of the display allows the selection of a defi-

nition from the pattern. The drop down list includes all the ”Definition” objects of the

pattern. The preview below that shows the full textual representation of the selected

definition (there is not enough space at the list). Similarly, the right part is used to

Chapter 5. Implementation issues 47

Figure 5.16: The window for replacing unspecified definitions from the existing clause

with definitions from the pattern

select the definition to be replaced. As in the previous window, it is not required to use

all the definitions from the pattern, for the reasons described above.

After describing the most interesting of the forms, we discuss some general issues

about the interface in whole. The approach followed throughout the design of the

GUI is to create a wizard-like interface. The way in which forms are called from

others in order to perform specific tasks, results in a sequence of steps which gradually

achieves the initial objective. The decision to follow such an approach was made for

two reasons. Firstly, we believe that the division of a task into steps is particularly

suitable to the incremental method for building LCC protocols. It quite natural to

think the method as a series of actions which incrementally define parts of the protocol

and the interface should not violate this natural way of thinking. The second reason is

the familiarity of users with wizard-like interfaces. Although the editor does not target

novice users, learnability is considered as a factor which plays some role for the value

of the outcome. One of the objectives of the graphical editor is to allow the building of

LCC protocols at a higher level than simply writing the protocol in LCC. In that sense,

it can be said that it aims to assist engineers to get familiar with LCC more quickly.

This can be achieved by a graphical interface which requires less time to learn than the

process of building protocols by hand. We expect that an interface which is structured

in way familiar to most users, will perform better in that sense.

Chapter 5. Implementation issues 48

5.3.2 Using class structure to provide the editing operations

Another interesting implementation issue is the integration of the internal structure

with the interface. We describe this by example. The correspondence between the

editing operations and internal procedures can easily generalize to other cases. The

definition of a message provides a good scenario, as it involves more operations than

other statements. We wish to use the scenario described in 4.3.2 for this purpose. A

suitable case is the replacement of<def8> with an unconditional incoming message.

The protocol at this stage is shown in figure A.22. We can see why<def8> should be

replaced by a message, by comparing the current state of the protocol with the target

clause shown in 4.1. In the next few paragraphs, we discuss how interface operations

lead to changes in the internal representation of the protocol when trying to build the

required message definition.

The first step is to use the menu of the main window, in order to show the display in

figure A.24. The drop down list with the definitions is filled by asking the protocol to

return all of its unspecified definitions, using the mechanism described in 5.2.2. This

is the way in which all the drop down lists are filled with the suitable statements. After

choosing the<def8> as the definition to be replaced and the message as the type of the

new definition, the ”OK” button should be pressed to confirm the choices. As we said

when describing the display, the window used for building messages will then appear

(figure 5.8).

At this point we have to define the ”Agent” object. By pressing the relevant but-

ton, the window for specifying agents will appear (figure 5.7). The role of the agent

should be the same as the one in the outgoing message of the protocol (according to

the target clause in 4.1 the agent receiving the outgoing message is the one sending

the incoming). In this case we have to define an appropriate ”Term” object by calling

the relevant window (figure A.25). We can specify that the function is the existing

<func3> and the argument is<arg15> (same as the role of the agent receiving the out-

going message). When the ”OK” button is pressed, the window returns a new ”Term”

object whose function member is set to be the object corresponding to<func2> and

its argument member is the object corresponding to<arg15>. Note that we are not

cloning the objects. The same objects are referenced by both roles.

After the term window is closed, the agent window displays the textual representa-

tion of the returned ”Term” object in the relevant text box (figure A.26). The ID of the

agent can be specified using the drop down list since it is also the same as the one in

Chapter 5. Implementation issues 49

the outgoing message. A new ”Agent” object will be created using the ”Term” object

returned before and the selected existing ”Argument” object as members. The final

result after the agent window is closed is shown in the relevant text box of the message

window.

The second part of defining the message is to specify its content. The content

of a message is defined as a term and therefore the term window is shown (figure

A.27). The function of the term we want to build is ”inform”, but we can also use

an unspecified one at this point, and its argument is another term. This means that

we have to specify the argument list of the term by pressing the relevant button. In

the display for building arguments (figure A.28) appearing next, we specify that the

argument will be a term. Another instance of the term display, allowing us to define the

new term, is shown (figure A.29). This time, the function should be named ”located”

and the argument is a list containing<arg20> and<arg23>. In order to specify its

argument, the arguments window is shown again (figure A.30. This time the choice is

an argument list and the window shown in figure A.31 appears.

After adding the two existing arguments to the list (<arg20> and<arg23>), the

window returns an ”ArgList” object containing them back to the arguments window.

After confirming the choice in the argument display the same object is returned back to

term window and a new ”Term” object is created (this is the termlocated(<arg20>,

<arg23>)). The new ”Term” object is returned to the first instance of the arguments

display and after pressing the ”OK” button it is returned back to the first instance of the

term display. At this point a new ”Term” is created using the returned ”Term” object

as its argument (<func2>(located(<arg20>,<arg23>)) assuming we have used an

unspecified function instead of ”inform”). Finally, this last ”Term” object is returned

to the message window.

After specifying the agent and the content of the message, we set the message to

be incoming and unconditional (figure A.32). This is possible using the relevant op-

tions on the message display. The confirmation of the message window will return

a ”Message” object to the definitions window. This object contains the ”Agent” and

”Term” objects created in message window as members (the ”Term” object is the con-

tent). The final step is to confirm the definitions window. The window will call the

protocol’s method for replacing definitions, passing to it the definition<def8> and the

newly constructed message as arguments of the call. The protocol will ask from its

clauses to replace the given definition (<def8>) and the process of replacement de-

scribed in 5.2.2 will result in the state shown in A.33. Finally, the definitions window

Chapter 5. Implementation issues 50

will ask the main window to refresh the displayed clauses. Although the procedure

described above does not involve the interface in whole, it is adequate to demostrate

how basic operations are used from the graphical interface in general.

Chapter 6

Evaluation and discussion

In the previous two chapters we have described a method for building LCC protocols

and a graphical tool implementing the method. The task of evaluating them is not

an easy one, for several different reasons. The nature of the language, in which the

method is based, is one of them. We have already mentioned that LCC is not just a

logic programming language, but mainly a process calculus. Although several efforts

with similar objectives have been made for techniques editing in Prolog, it is clear that

a direct comparison with the LCC case is probably not meaningful. There are specific

aspects of the different methods, which can be used as a basis for a comparison, but it

is probably not possible to say that our editor is clearly better or worse. The difference

in the groups of people that the editors are supposed to help (we focus on assisting

engineers while the other two editors focus on teaching novices) is also expected make

the comparison even more difficult.

Another issue about evaluation is the difficulty of measuring any aspect of the

performance. A useful approach to estimate the efficiency would be to experiment on

the usability features of the editor with human subjects. An experiment like that could

measure the time needed for constructing protocols with and without the editor. The

number of errors in the constructed protocols would also be an interesting metric. A

reasonable hypothesis is that the editor, and therefore the method, can help engineers

to build LCC protocols faster, while making fewer mistakes. Even an experiment like

that would not be perfectly appropriate for evaluating our work at this stage. Although

the editor has some value from the engineering point of view as it is, its practical use

for protocol building is subject to many improvements. At this point, the graphical

tool is mainly for demonstration purposes in order to investigate the use of patterns in

LCC. Moreover, the described experiment is not feasible at this point, due to the lack

51

Chapter 6. Evaluation and discussion 52

of time and the difficulty of finding adequate number of knowledge engineers familiar

with LCC. Given these facts, there is no obvious way to obtain some metrics about the

efficiency of the method and this is a major problem for the evaluation.

Considering these difficulties, there are not many alternatives left for the evaluation

of the project. The approach we have followed is to theoretically discuss how and in

what degree the expectations are met by the outcome. A comparison with the editors

listed in 3 will also contribute to the evaluation task. Note that this comparison will

be limited to the factors in which it can be meaningful, given the differences of the

editors. Finally, a list of improvements for the method and the editor will be presented.

These improvements will help the method to achieve its goals at a higher degree, while

enabling us to evaluate our work in measurable terms.

6.1 Comparing outcome with project objectives

In this first part of the evaluation we will try to assess the project outcome with regard

to its initial goals. In order to do that, we will have to clearly identify and state the

objectives and the factors affecting them. As it has been said before, the two main

objectives of our work are:

1. The investigation of how patterns can be used in LCC protocols and whether

techniques editingcan be suitable for LCC

2. The development of a tool which is expected to make the LCC approach for the

coordination of multi-agent systems, more accessible to knowledge engineers

These two objectives are illustrative of our motivation for this project. However, they

are too general to be used for evaluation. The main factors involved in satisfying them

have to be determined, in order to have meaningful discussion about how the outcome

meets these demands.

From the researchers’ point of view, an ideal method achieving the first objective

would allow us to define and combine any kind of patterns at any level of abstraction.

Although it is not clear how this kind of freedom would affect usability (it is not sure

if such a method would be efficient for the users), it is interesting for the researchers

to be able to capture all kinds of common programming techniques. Such a method

should also allow the building of protocols by using only patterns and without requiring

manual refinement. Another interesting feature is to be able to determine the suitability

of a pattern for a given case. The building of protocols could then be done by entering

Chapter 6. Evaluation and discussion 53

high level goals to the editor, which would be able to propose combinations of patterns

achieving the goals. Given that our understanding of patterns in LCC is not complete

at the moment, a reasonable expectation is probably to approach the most important of

the above features.

The range of protocols supported by our editor are adequate to include the most

commonly used patterns, which are the skeletal ones due to their higher abstraction.

By studying the example protocols in [9], [10] and [8], we can see that suitable skele-

tons for all the clauses involved can be defined and applied using the editor in a conve-

nient way. Moreover, as we have shown in the scenario in 4.3.2, a number or detailed

patterns can be supported and a mechanism for applying them to skeletons exists. How-

ever, interesting improvements can be made in order to increase the information and

the constraints included in the detailed patterns (e.g. we can require that an undefined

definition includes specific statements). This will also make the range of such pat-

terns wider. The existing structure allows these modifications (e.g. in order to support

the constraint described above only an appropriate extension to the definition class is

required) and therefore it is argued that we have worked towards that direction.

Finally, the mechanism for combining patterns can accept even more improve-

ments. In particular, a more detailed mapping between the statements in the pattern

and the ones in the already constructed skeleton. An initial approach to this is illus-

trated by the way that the heads of two clauses are combined when applying a detailed

pattern. Hence, we believe that this issue has also been studied during the project and

there is a straightforward way to extend the functionality in this way. An aspect in

which we did not focus during this project, is the feature of judging the suitability of

patterns and proposing relevant patterns based on that. The automated combination

of patterns, in order to accomplish high level goals, was also not a feature we have

worked on. These two are considered as advanced features requiring in depth research

on LCC protocols and considerable amount of time to implement. Our editor can only

be used to experiment with patterns, in order to obtain the information required for

building such a system. Although these features are extremely interesting from the

researcher’s point of view, we believe that a tool for building LCC protocols can be

adequately efficient without supporting them. The performance of the editor with re-

gard to patterns in general is considered to be good, given the available resources for

the current project. Many of the missing features can be easily added and are better

described as future work than as shortcomings. The development of a more intelli-

gent editor requires much more work on understanding how patterns work in LCC and

Chapter 6. Evaluation and discussion 54

therefore it would not be reasonable to expect that so early.

Apart from understanding and applying protocols in LCC, which is interesting from

the researcher’s point of view, another objective of the project is to build a tool for sup-

porting knowledge engineers. This second goal has mostly practical value and should

be considered together with the first. We could probably put more effort working on

patterns, if we did not have to ensure that the outcome of the project is useful from the

practical point of view. The usefulness of the tool in that sense can be measured as the

time needed to get familiar with the process of building protocols, the time needed to

construct a given protocol and the quality of the protocols in terms of the number of

errors in the final result. As we have argued before, we do not have the resources to

run experiments with human subjects on the above factors. What we are going to do is

to evaluate the usability and efficiency features of our editor by comparing them with

the desired ones.

A tool able to construct LCC protocols using high level descriptions as input, would

probably be the most efficient and convenient way to build protocols. Moreover, the

ideal editor should be able to build the full range of protocols supported by the lan-

guage, since it does not aim to be a demonstration or teaching tool (in that case a

reasonable subset would be adequate), but a practical one used for general purpose

protocol building. Especially this last requirement can not be ignored by any tool

claiming to have practical applications. It is obvious that this combination of require-

ments is not just difficult to implement but probably even infeasible. We believe that

the most decent way to build a useful editor is to prioritize the different requirements

involved.

As said before, the most important requirement is to support everything that can be

written using the LCC language. This was the basis for the development of our editor.

The incremental method can build any possible statement of LCC and it can be said to

be equivalent with writing protocols by hand in terms of expressiveness. This feature

ensures the suitability of the outcome for use in general purpose protocol building.

The second factor is the level of description required. Apart from the knowledge about

what the protocol should do, writing protocols also requires detailed knowledge of the

syntax of LCC. Our editor lifts the level of knowledge required by the engineer to a

higher one. The user of our editor is able to focus on the semantic level of the protocol

by determining which the content of a statement should be. We do not claim that no

knowledge of the syntax is required, but the editor itself can avoid many potential errors

in protocol structuring. Moreover, errors at this level are not expected to occur since

Chapter 6. Evaluation and discussion 55

the statements are guaranteed to be syntactically correct. The semantic consistency

of the protocol is also partially supported, mainly by the validation feature we have

described before. However, more work is required in order to claim that the tool is

adequate to ensure the semantic consistency of the protocols.

We have argued that the editor is valuable in the sense that it requires less knowl-

edge from the engineer than manual building. This has mainly to do with allowing

engineers to become familiar with LCC more quickly. The existence of a graphical

user interface can also help in that sense. The issue of efficiency either in terms of time

needed for constructing protocols, or in terms of quality of the outcome, is more diffi-

cult to evaluate without having metrics. We can argue that it is probably the case that

the quality of the protocols is considerably better, given the lack of syntactical errors

and the mechanism for avoiding common errors at the semantic level. However, the

claim is not well supported without having discrete measurements. The speed up in the

process of building protocols is even harder, since any estimation would be very inac-

curate and therefore of limited importance. Roughly speaking, even if the incremental

method does not contribute at the reduction of time at all, the use of patterns (especially

the skeletal ones which can be widely used with very low effort) is expected to speed

up the process. In general, the editor is expected to be more efficient than writing the

protocol by hand, but it is left to be determined when more evidence will be available,

probably by running some experiments.

The conclusion of this part of the evaluation is that the work done so far is towards

the right direction. Although there is a difference between the state of our work and

the ideal case, which varies from issue to issue, we can argue that the approach to the

problem was at least a fair one. We are going to see later that interesting future work

can be based upon our effort and this fact is adding more value to the current outcome.

6.2 Comparing outcome with related work

We have already discussed in 3 twotechniques editingbased Prolog editors. We have

also argued that these efforts are similar to ours due to the approach they follow for

structured development of Prolog programs. However, we have also highlighted the

differences between LCC and Prolog. It is not meaningful to consider all three editors

as alternative solutions to the same problem. We will try to compare the approaches

with regard to the aspects in which a comparison may lead to interesting conclusions.

An interesting issue is the representation and use of patterns. Robertson’s editor

Chapter 6. Evaluation and discussion 56

([6]) has a richer representation of patterns comparing to ours. It follows the same

skeleton-addition approach, but the patterns also include information about how argu-

ments will be mapped to existing clauses. Moreover, the editor can assess the suitabil-

ity of a specific pattern in a given case. The whole procedure of applying patterns is

much more controlled than in our case. Ted ([1]) on the other hand, has some simi-

lar features for mapping the arguments and checking the suitability, but the range of

patterns it can support is limited to relationships between the head and the recursive

arguments of recursive clauses. Given the fact that both of them aim to help novices

learn Prolog, it is quite obvious why this controlled approach to applying patterns is

desirable. We do not argue that such features would not be interesting in our case,

but it is probably the case that they are not of the same importance. In our case, it is

reasonable to require that engineers know how to use the supplied patterns in order to

accomplish their objectives.

By taking a closer look to the way that the three editors view patterns, we realize

that there is a major difference between our editor and the others. We mostly view

patterns as reusable parts of LCC code, which can be applied when constructing pro-

tocols mostly in order to save effort. No information about what these patterns do at

the semantic level is available. Prolog editors view patterns as primitive operations,

the combinations of which can produce an impressive range of Prolog programs. They

aim to help novices understand these primitive techniques and learn how to combine

them to build working programs. This second approach would probably be desirable

in LCC case as well. The reason we did not work towards that direction is mainly

that LCC identical to Prolog. In Prolog quite impressive things can be done with a

reasonably small number of patterns. This is the case mostly because Prolog programs

are made by using the language’s simple syntax in complex ways. Some of these ways

can be captured and formalized as patterns.

Judging from what we have seen so far in the LCC protocols we have studied, LCC

is somehow different. Although it is similar to Prolog in some sense, the patterns which

can do amazing things in Prolog, are not that useful for building LCC clauses. This is

not unexpected since LCC is a process specification language aiming to express totally

different things. It is not clear yet if LCC clauses can be seen as combinations of a

reasonably small set of patterns. Even if this is proved to be the case, these patterns

will definitely not be same as in Prolog. Considering the practical value that we would

like the outcome to have, we have chosen a approach which is more pattern-assisted

then pattern-based. At this initial stage of research in LCC patterns, we do not wish

Chapter 6. Evaluation and discussion 57

to see clauses as combinations of patterns. What we want is to provide mechanisms

for capturing common parts of LCC code and reuse it when possible. By studying the

repeatability of those patterns and the factors which may affect it negatively, we can

improve our method and probably reach the level of pattern usage in Prolog.

Another interesting aspect, in which we can compare our editor with the others,

is usability. Robertson’s editor can suggest modifications to the program being con-

structed. It provides guidance to the user and it is clear that much effort has been put

on the usability of the editor. Although the interface is not graphical, it is obvious that

it is good enough to allow novices construct Prolog programs efficiently. Ted does not

seem to provided such a guided approach to the construction of programs, but the level

of usability is good due to the controlled way of applying patterns. In general, both ed-

itors seem to have better performance than ours from the usability point of view. Once

more, this is expected since they both target to novices. In our case, it is probably more

important to do things fast than to provide explanations and guidance. Of course, the

combination of efficiency and usability would be even better, but much effort is proba-

bly required to reach such a result. We have focused on allowing engineers to express

anything that can be expressed in LCC, using a robust method which aims to reduce the

effort. Future work can be done on the graphical interface in order improve usability

without violating its efficiency and therefore degrading its value from the engineering

point of view.

The conclusion after this brief comparison is ambiguous. The differences in the

languages supported by the editors and the goals of the projects do not allow us to

adequately evaluate our work with regard to related work in Prolog. There are some

aspects in which discussion is meaningful, but even in those cases there are arguments

to support that these differences do not allow safe conclusions.

6.3 Future directions

We have mentioned several aspects of our editor so far, in which we believe that in-

teresting improvements can be made. The research in pattern-based building of LCC

protocols is at a very early stage and therefore the list of possible improvements to the

method and the editor can be very long. We have discussed some of the long-term

directions in the previous sections. In particular, the investigation of how LCC clauses

can be entire ly described as combinations of common patterns and the building of pro-

tocols by providing higher level descriptions of what the protocol is expected to do, are

Chapter 6. Evaluation and discussion 58

already said to be long-term goals. Such improvements require a better understanding

of LCC patterns and should be attempted at later stages. At this point we will try to fo-

cus on a reasonably small set of improvements which are more or less straightforward

to apply. A list of those is the following:

• A more sophisticated way to merge patterns by allowing the detailed mapping

of the definitions included in the pattern to existing ones.

• Mechanisms allowing constraints to be placed on unspecified statements (e.g.

requiring that an unspecified definition should include somewhere a given pred-

icate or argument).

• Refinement of the class structure to precisely reflect the syntactical constraints

of LCC

• Work on the usability and efficiency of the graphical interface. Adapting the

interface to the natural way of thinking when building protocols.

• Using the tool to experiment on patterns of variable detail, in order to obtain

better understanding of their role in LCC

We have already described why the mechanism for applying detailed patterns on a

skeleton should be further refined. We have also seen what such a mechanism should

look like, since the mapping of arguments included in the heads of the clauses illus-

trates an approach to tackle the problem. The extension of the constraints to allow their

application on unspecified statements is also interesting. At this moment, the user has

to specify the position of a statement in a definition or condition. This means that the

definition or condition has to be defined at some level of abstraction. This is restric-

tive since all alternative cases have to be defined explicitly. By allowing constraints

on unspecified statements it becomes possible to require that another statement should

be included somewhere in the unspecified one, without specifying its exact position

(this is useful when we actually do not care about the position). As far as the class

structure is concerned, we have already mentioned that we have chosen not to refine

it as much as we could, in order to keep it simple. As the understanding of our actual

requirements for the method is becoming more elaborate, the class structure should be

refined to precisely reflect the syntax of LCC.

Usability and efficiency are important factors, since the editor aims to have some

practical value. A study of the way that the engineers think when building protocols

Chapter 6. Evaluation and discussion 59

would have a major contribution. A user interface adapted to a more natural way of

thinking might reduce the effort and time needed to build protocols, while increasing

the learnability of the interface at the same time. Finally, the exploitation of the out-

come to further investigate the role of patterns in LCC is a major part of the future

work. The conclusions that will be drawn by experimenting with patterns using the

editor, will lead to the further improvement of the method and the tool, towards the

long-term goals we have described before.

Chapter 7

Conclusion

We have proposed a method for the structured building of LCC protocols. We have also

described how this method can be used to build a prototypical editor for this purpose.

We argue that this tool has both a practical value, since it can be used for general

purpose protocol building, and research value, since it can serve as the basis for further

investigation of LCC patterns. Interesting future work can be based upon the results

presented here and therefore we consider that our effort has considerable contribution

to the whole LCC approach.

We have developed a tool, which seems to improve the process of building LCC

protocols, by requiring less knowledge and effort from the engineer. Moreover, there

are some straightforward things to be done that are expected to improve this situa-

tion even more. The practical value was a primary consideration when designing the

method and implementing the editor and this has resulted in a tool which is expected

to make LCC protocol building both easier and faster. The validity of these expecta-

tions are left to be confirmed by experimenting on the usability and efficiency of the

tool, since we did not have the resources to evaluate our method by running experi-

ments during this project. Nevertheless, the current tool does allow large segments of

protocol to be added rapidly, in skilled hands, it is likely to be faster than a generic

editor.

Judging the outcome from the researchers’ point of view, we can say that although

some interesting issues have been addressed, the research field is quite new and there-

fore there are lots of things to be done yet. The approaches used in Prolog editors can

give useful ideas for how a similar method for LCC should be. However, a direct ap-

plication of those approaches in LCC is not straightforward, because of the differences

between the languages. LCC clauses does not seem to be described in the way that

60

Chapter 7. Conclusion 61

Prologtechniquesattempt to describe Prolog clauses, mostly because LCC is oriented

to specifying processes. An adaptation oftechniques editingapproach is probably pos-

sible, but we have chosen a method that is more straightforwardly based on structural

patterns, in order to ensure the practical value of the outcome. Our proposed method

is not so ambitious astechniques editing, since it does try to describe LCC clauses as

they are composed by a set oftechniques. Our aim was to enable capturing and reusing

common patterns, when it is possible and useful according the engineer’s judgment.

Since our editor can be used to write patterns, it can be used in order to improve our

understanding of the role of patterns in LCC, enabling the design of more ambitious

approaches similar totechniques editing. Some interesting future directions, that aim

to the development of more sophisticated methodologies for builing protocols using

patterns, are presented in 6.3.

Appendix A

Using the interface to construct an

example clause

The following figures show the process of constructing the example clause shown in

4.1 as a series of screenshots taken from the editor. It supplementary to the description

of the process given in 4.3.2.

Figure A.1: Add a clause from pattern

62

Appendix A. Using the interface to construct an example clause 63

Figure A.2: Select the file

Figure A.3: Preview the pattern stored in the file

Appendix A. Using the interface to construct an example clause 64

Figure A.4: The new clause

Figure A.5: Specify the definition

Figure A.6: Specify it as a sequence

Appendix A. Using the interface to construct an example clause 65

Figure A.7: The resulting clause

Figure A.8: Apply a pattern to the existing clause

Figure A.9: Select the file

Appendix A. Using the interface to construct an example clause 66

Figure A.10: Preview the pattern with the new numbering

Figure A.11: Map arg11,arg12 to arg4 of the existing clause

Appendix A. Using the interface to construct an example clause 67

Figure A.12: Map the definition representing the conditional message to def7

Figure A.13: Map the definition representing the terminating condition of the recursion

to def6

Figure A.14: The clause after applying the pattern

Appendix A. Using the interface to construct an example clause 68

Figure A.15: Specify an argument

Figure A.16: Specify arg8 as an argument list

Figure A.17: Build an argument list with arg21 and arg24 as elements

Appendix A. Using the interface to construct an example clause 69

Figure A.18: The result after completing the application of the detailed pattern

Figure A.19: Specify the argument arg8

Figure A.20: Replace it with a term

Appendix A. Using the interface to construct an example clause 70

Figure A.21: Specify the term

Figure A.22: The clause after specifying arg8

Figure A.23: Specify the definition def8

Appendix A. Using the interface to construct an example clause 71

Figure A.24: Replace it with a message

Figure A.25: The role of the agent sending the message is the same with one receiving

the outgoing message

Appendix A. Using the interface to construct an example clause 72

Figure A.26: The identifier of the agent is also the same

Figure A.27: The term representing the message

Figure A.28: The content of the message is another term

Appendix A. Using the interface to construct an example clause 73

Figure A.29: Define the term representing the content

Figure A.30: Specify its argument as an argument list

Figure A.31: The argument list consists of the remainders of the two lists in the condition

of the outgoing message (arg20 and arg23)

Appendix A. Using the interface to construct an example clause 74

Figure A.32: The message as we have defined it

Figure A.33: The result after the addition of the message

Appendix A. Using the interface to construct an example clause 75

Figure A.34: Specify function

Figure A.35: Replace the functions with named ones

Figure A.36: The final result

Bibliography

[1] Bowles A. A techniques editor for prolog novices. Internal software report,

available by the author, 1994.

[2] Bowles A., Robertson D., Vasconcelos W., Vargas-Vera M., and Bental D. Apply-

ing prolog programming techniques.International Journal of Human-Computer

Studies, 41(3):329–350, 1994.

[3] Walton C. Model checking agent dialogues. InProceedings of the 2004 Workshop

on Declarative Agent Languages and Technologies (DALT), 2004.

[4] Walton C. Model checking multi-agent web services. InProceedings of AAAI

Spring Symposium on Semantic Web, 2004.

[5] Walton C. and Barker A. An agent-based e-science experiment builder. InPro-

ceedings of the 1st International Workshop on Semantic Intelligent Middleware

for the Web and the Grid, 2004.

[6] Robertson D. A simple prolog techniques editor for novice users. InProceedings

of 3rd UK Annual Conference on Logic Programming, pages 190–205. Springer-

Verlag, 1991.

[7] Robertson D. A lightweight coordination calculus for agent social norms. In

AAMAS Workshop on Declarative Agent Languages and Technologies, 2004.

[8] Robertson D. A lightweight coordination calculus for agent systems. Technical

report, Informatics, University of Edinburgh, 2004.

[9] Robertson D. A lightweight method for coordination of agent oriented web ser-

vices. InProceedings of AAAI Spring Symposium on Semantic Web Services,

2004.

76

Bibliography 77

[10] Robertson D. Multi-agent coordination as distributed logic programming. In

”Logic programming” 20th International Conference, Proceedings, volume 3132

of Lecture Notes in Computer Science, pages 416–430, 2004.

[11] Robertson D., Correa da Silva F., Agusti J., and Vasconcelos W. A lightweight

capability communication mechanism. InProceedings of the 13th International

Conference on Industrial and Engineering Applications of Artificial Intelligence

and Expert Systems, 2000.

[12] Walton C. D. and Robertson D. Flexible multi-agent protocols. Technical Report

EDI-INF-RR-0164, University of Edinburgh, 2002.

[13] Gamma E., Helm R., Johnson R., and Vlissides J.Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1995.

[14] FIPA Foundation for Intelligent Physical Agents.FIPA Specification Part 2 -

Agent Communication Language, 1999.

[15] McGinnis J., Robertson D., and Walton C. Using distributed protocols as an im-

plementation of dialogue games. InProceedings of the First European workshop

on Multi-Agent Systems, 2003.

[16] Austin J. L.How to Do Things With Words. Oxford University Press, 1962.

[17] Esteva M., Rodriguez J. A., Sierra C., Garcia P., and Arcos J. L. On the formal

specification of electronic institutions. InAgent-mediated Electronic Commerce

(The European AgentLink Perspective), number 1991 in Lecture Notes in Artifi-

cial Intelligence, pages 126–147. 2001.

[18] Greaves M., Holmback H., and Bradshaw J. What is a conversation policy?

In Proceedings of the Workshop on Specifying and Implementing Conversation

Policies, Autonomous Agents ’99.

[19] Kirschenbaum M., Lakhotia A., and Sterling L. Skeletons and techniques for pro-

log programming. Technical Report 89-170, Case Western Reserve University,

1989.

[20] Brna P., Bundy A., Dodd T., Eisenstadt M., Looi C.K., Pain H.and Robertson D.,

Smith B., and Van Someren M. Prolog programming techniques.Instructional

science, 20(2/3):111–134, 1991.

Bibliography 78

[21] Coalition D. S. DAML-S: Semantic markup for web services. Technical report,

DARPA Agent Markup Language group, 2003.

[22] Finin T., Fritzson R., McKay D., and McEntire R. KQML as an agent com-

munication language. InProceedings of the Third International Conference on

Information and Knowledge Management CIKM’94. ACM Press, 1994.

[23] Vasconcelos W. Designing prolog programming techniques. InProceedings of

the Third International Workshop on Logic Program Synthesis and Tranforma-

tion. Springer Verlag, 1993.

