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Abstract. We propose a logic-based rendition of electronic institutions
– these are means to specify open agent organisations. We employ a
simple notation based on first-order logic and set theory to represent
an expressive class of electronic institutions. We also provide a formal
semantics to our constructs and present a distributed implementation of
a platform to enact electronic institutions specified in our formalism.

1 Introduction

In this paper we propose a logical formalism that allows the representation of a
useful class of protocols involving many agents. This formalism combines first-
order logic and set theory to allow the specification of interactions among agents,
whether an auction, a more sophisticated negotiation or an argumentation frame-
work. We introduce and exploit the logic-based formalism within the context of
electronic institutions: these are means to modularly describe open agent or-
ganisations [6]. As well as providing a flexible syntax for interactions, we also
formalise their semantics via the construction of models.

Current efforts at standardising agent communication languages like KIF
and KQML [12] and FIPA-ACL [7] do not cater for dialogues: they do not offer
means to represent relationships among messages. Work on dialogues (e.g. [11],
[15] and [21]), on the other hand, prescribe the actual format, meaning and
ultimate goal of the interactions. Our effort aims at providing engineers with
a notation for specifying interactions among the components of a Multi-Agent
System (MAS, for short), but which allows relationships to be forged among the
interactions. A typical interaction we are able to express in our formalism is “all
seller agents advertise their goods; after this, all buyer agents send their offers
for the goods to the respective seller agent”. In this interaction, it is essential
that the buyer agents send offers to the appropriate seller agents, that is, each
seller agent should receive an appropriate offer to the good(s) it advertised.

This paper is structured as follows. In Section 2 we describe the syntax
and semantics of our proposed logic-based formalism to describe protocols. In
Section 3 we introduce a definition of electronic institutions using our logic-based
notation for protocols giving their formal meaning; in that section we illustrate
our approach with a practical example and we describe how we implemented a
platform to enact electronic institutions expressed in our formalism. Finally, in
Section 4 we draw conclusions and give directions for future work.



2 A Set-Based Logic L for Protocols
In this section, we describe a set-based first-order logic L with which we can
define protocols. Our proposed logic provides us with a compact notation to
formally describe relationships among messages in a protocol. Intuitively, these
constructs define (pre- and post-) conditions that should hold as agents follow a
protocol.

We aim at a broad class of protocols in which many-to-many interactions
(and, in particular, one-to-one, one-to-many and many-to-one) can be formally
expressed. The protocols are global in the sense that they describe any and
all interactions that may take place in the MAS. One example of the kind of
interactions we want to be able to express is “an agent x sends a message to
another agent y offering an item k for sale; agent y replies to x’s message making
an offer n to buy k” and so on. We define L as below:

Definition 1. L consists of formulae Qtf (Atfs ⇒ SetCtrs) where Qtf is the quantifi-
cation, Atfs is a conjunction of atomic formulae and SetCtrs is a conjunction of set
constraints.

Qtf provides our constructs with universal and existential quantification over
(finite) sets; Atfs expresses atomic formulae that must hold true and SetCtrs
represents set constraints that (are made to) hold true. We define the classes
of constructs Qtf , Atfs and SetCtrs in the sequel. We refer to a well-formed
formulae of L generically as Fml .

We shall adopt some notational conventions in our formulae. Sets will be
represented by words starting with capital letters and in this typefont, as in, for
example “S”, “Set” and “Buyers”. Variables will be denoted by words starting
with capital letters in this typefont, as in, for example, “X ”, “Var” and “Buyer”.
We shall represent constants by words starting with non-capital letters in this
font; some examples are “a” and “item”. We shall assume the existence of a
recursively enumerable set Vars of variables and a recursively enumerable set
Consts of constants.

In order to define the class Atfs of atomic formulae conjunctions, we first put
forth the concept of terms:

Definition 2. All elements from Vars and Consts are in Terms. If t1, . . . , tn are in
Terms, then f(t1, . . . , tn) is also in Terms, f being a function symbol.

The class Terms is thus defined recursively, based on variables and constants
and their combination with functional symbols. An example of a term using our
conventions is enter(buyer). We can now define the class Atfs:

Definition 3. If t1, . . . , tn are Terms, then p(t1, . . . , tn) is an atomic formula (or,
simply, an atf), where p is any predicate symbol. A special atomic formula is defined
via the “=” symbol, as t1 = t2. The class Atfs consists of all atfs; furthermore, for any
Atf 1 and Atf 2 in Atfs, Atf 1 ∧ Atf 2 is also in Atfs.

This is another recursive definition: the basic components are the simple atomic
formulae built with terms. These components (and their combinations) can be
put together as conjuncts.

We now define the class of set constraints. These are restrictions on set op-
erations such as union, intersection, Cartesian product and set difference [8]:

Definition 4. Set constraints are conjunctions of set operations, defined by the fol-
lowing grammar:



SetCtrs → SetCtrs ∧ SetCtrs | (SetCtrs) | MTest | SetProp
MTest → Term ∈ SetOp | Term 6∈ SetOp

SetProp → card (SetOp) Op N | card (SetOp) Op card (SetOp) | SetOp = SetOp
Op → = | > | ≥ | < | ≤

SetOp → SetOp ∪ SetOp | SetOp ∩ SetOp | SetOp − SetOp
| SetOp × SetOp | (SetOp) | Set | ∅

MTest is a membership test, that is, a test whether an element belongs or not
to the result of a set operation SetOp (in particular, to a specific set). SetProp
represents the set properties, that is, restrictions on set operations as regards to
their size (card) or their contents. N is the set of natural numbers. Op stands for
the allowed operators of the set properties. SetOp stands for the set operations,
that is, expressions whose final result is a set. An example of a set constraint is
B ∈ Buyers∧card (Buyers) ≥ 0∧card(Buyers) ≤ 10. We may, alternatively, employ
|Set| to refer to the cardinality of a set, that is, |Set| = card (Set). Additionally,
in order to simplify our set expressions and improve their presentation, we can
use 0 ≤ |Buyers| ≤ 10 instead of the previous expression.

Finally, we define the quantifications Qtf :

Definition 5. The quantification Qtf is defined as:
Qtf → Qtf ′ Qtf | Qtf ′

Qtf ′ → Q Var ∈ SetOp | Q Var ∈ SetOp,Var = Term
Q → ∀ | ∃ | ∃!

Where Term ∈ Terms and Var ∈ Vars.

We pose an important additional restriction on our quantifications: either Var
or subterms of Term must occur in (Atfs ⇒ SetCtrs).

Using the typographic conventions presented above, we can now build correct
formulae; an example is ∃B ∈ Ags (m(B, adm , enter(buyer )) ⇒ (B ∈ Bs ∧ 1 ≤
|Bs| ≤ 10)). To simplify our formulae, we shall also write quantifications of the
form Qtf Var ∈ SetOp,Var = Term simply as Qtf Term ∈ SetOp. For instance,
∀X ∈ Set, X = f(a, Z) will be written as ∀f(a, Z) ∈ Set.

2.1 The Semantics of L
In this section we show how Fml is mapped to truth values > (true) or ⊥ (false).
For that, we first define the interpretation of our formulae:

Definition 6. An interpretation = for Fml is the pair = = (σ, Ω) where σ is a possibly
empty set of ground atomic formulae (i.e. atfs without variables) and Ω is a set of sets.

Intuitively our interpretations provide in σ what is required to determine the
truth value of Qtf (Atfs) and in Ω what is needed in order to assign a truth
value to Qtf (SetCtrs).

We did not include in our definition of interpretation above the notion of
universe of discourse (also called domain) nor the usual mapping between con-
stants and elements of this universe, neither the mapping between function and
predicate symbols of the formula and functions and relations in the universe of
discourse [4, 13]. This is because we are only interested in the relationships be-
tween Atfs and SetCtrs and how we can automatically obtain an interpretation
for a given formula. However, we can define the union of all sets in Ω as our
domain. It is worth mentioning that the use of a set of sets to represent Ω does
not cause undesirable paradoxes: since we do not allow the formulae in L to
make references to Ω, but only to sets in Ω, this will not happen.

The semantic mapping k : Fml ×= 7→ {>,⊥} is:



1. k(∀Terms ∈ SetOp Fml ,=) = > iff k(Fml |Terms
e ,=) = > for all e ∈ k′(SetOp,=)

k(∃Terms ∈ SetOp Fml ,=) = > iff k(Fml |Terms
e ,=) = > for some e ∈ k′(SetOp,=)

k(∃!Terms ∈ SetOp Fml ,=) = > iff k(Fml |Terms
e ,=) = > for a single e ∈

k′(SetOp,=)
2. k((Atfs ⇒ SetCtrs),=) = ⊥ iff k(Atfs,=) = > and k(SetCtrs ,=) = ⊥
3. k(Atfs1 ∧ Atfs2,=) = > iff k(Atfs1,=) = k(Atfs2,=) = >

k(Atf ,=) = > iff Atf ∈ σ,= = (σ, Ω)
4. k(SetCtrs1 ∧ SetCtrs2,=) = > iff k(SetCtrs1,=) = k(SetCtrs2,=) = >
5. k(Terms ∈ SetOp,=) = > iff Terms ∈ k′(SetOp,=);

k(Terms 6∈ SetOp,=) = > iff Terms 6∈ k′(SetOp,=)
k(|SetOp| Op N,=) = > iff |k′(SetOp,=)| Op N holds.
k(|SetOp1|Op |SetOp2|,=) = > iff |k′(SetOp1,=)|Op |k′(SetOp2,=)| holds.
k(SetOp1 = SetOp2,=) = > iff k′(SetOp1,=) = k′(SetOp2,=)

In item 1 we address the three quantifiers over Fml formulae, where Fml |Terms
e is

the result of replacing every occurrence of Terms by e in Fml . Item 2 describes
the usual meaning of the right implication. Item 3 formalises the meaning of
conjunctions Atfs and the basic case for individual atomic formulae – these are
only considered true if they belong to the associated set σ of the interpretation
=. Item 4 formalises the meaning of the conjunct and disjunct operations over
set constraints SetCtrs and the basic membership test to the result of a set
operation SetOp. Item 5 describes the truth-value of the distinct set properties
SetProp. These definitions describe only one case of the mapping: since ours is a
total mapping, the situations which are not described represent a mapping with
the remaining value > or ⊥.

The auxiliary mapping k′ : SetOp × = 7→ Set in Ω,= = (σ, Ω), referred to
above and which gives meaning to the set operations is thus defined:
1. k′(SetOp1 ∪ SetOp2,=) = {e | e ∈ k′(SetOp1,=) or e ∈ k′(SetOp2,=)}
2. k′(SetOp1 ∩ SetOp2,=) = {e | e ∈ k′(SetOp1,=) and e ∈ k′(SetOp2,=)}
3. k′(SetOp1 − SetOp2,=) = {e | e ∈ k′(SetOp1,=) and e 6∈ k′(SetOp2,=)}
4. k′(SetOp1 × SetOp2,=) = {(e1, e2) | e1 ∈ k′(SetOp1,=) and e2 ∈ k′(SetOp2,=)}
5. k′((SetOp),=) = (k′(SetOp,=)).
6. k′(Set,=) = {e | e ∈ Set in Ω,= = (σ, Ω)}, k′(∅,=) = ∅.

The 4 set operations are respectively given their usual definitions [8]. The mean-
ing of a particular set Set is its actual contents, as given by Ω in =. Lastly, the
meaning of an empty set ∅ in a set operation is, of course, the empty set.

We are interested in models for our formulae, that is, interpretations that map
Fml to the truth value > (true). We are only interested in those interpretations
in which both sides of the “⇒” in the Fml ’s hold true. Formally:
Definition 7. An interpretation = = (σ, Ω) is a model for a formula Fml = Qtf (Atfs ⇒
SetCtrs), denoted by m(Fml ,=) iff σ and Ω are the smallest possible sets such that
k(Qtf Atfs ,=) = k(Qtf SetCtrs ,=) = >.

The scenarios arising when the left-hand side of the Fml is false do not interest
us: we want this formalisation to restrict the meanings of our constructs only
to those desirable (correct) ones. The study of the anomalies and implications
caused by not respecting the restrictions of a protocol albeit important is not in
the scope of this work.

We now define the extension of an interpretation, necessary to build models
for more than one formula Fml :
Definition 8. =′ = (σ′, Ω′) is an extension of = = (σ, Ω) which accommodates Fml,
denoted by ext(=, Fml) = =′, iff m(Fml ,=′′),=′′ = (σ′′, Ω′′) and σ′ = σ ∪ σ′′, Ω′ =
Ω ∪ Ω′′.



3 Logic-Based Electronic Institutions
In the same way that social institutions, such as a constitution of a country or
the rules of a club, are somehow forged (say, in print or by common knowledge),
the laws that should govern the interactions among heterogeneous agents can
be defined by means of electronic institutions (e-institutions, for short) [5, 6, 14,
16]. E-institutions are non-deterministic finite-state machines describing possi-
ble interactions among agents. The interactions are only by means of message
exchanges, that is, messages that are sent and received by agents. E-institutions
define communication protocols among agents with a view to achieving global
and individual goals.

Although different formulations of e-institutions can be found in the liter-
ature [5, 6, 14, 16, 19], they all demand additional informal explanations con-
cerning the precise meaning of its constructs. In an e-institution the interac-
tions among agents are described as finite-state machines with messages la-
belling the edges between two states. A simple example is graphically depicted
in Fig. 1 where two agents x and y engage in a simple two-step conversation

?>=<89:;w1
m(x,y,sell(k))

// ?>=<89:;w2
m(y,x,offer(k,n))

// ?>=<89:;w3

Fig. 1: Protocol as a Finite-State Machine

– to save space, we have represented messages as atomic formulae of the form
m(Sender ,Addressee ,Conts), meaning that Sender is sending to Addressee mes-
sage Conts ; alternative formats such as FIPA-ACL [7] could be used instead.
Agent x informs agent y that it wants to sell item k and y replies with an offer
n. In the example above we employed variables x, y, k and n but it is not clear
what their actual meaning is: is x the same in both edges? is it just one agent x
or can many agents follow the transition? It is not clear from the notation only
what the meaning of the label is. Surely, informal explanations could solve any
ambiguity, but by tacitly assuming the meaning of constructs (i.e. “hardwiring”
the meaning to the syntax), then variations cannot be offered. For instance, if
we assume that the variables in Fig. 1 are universally quantified, then it is not
possible to express the existential quantification and vice-versa. Similar expres-
siveness losses occur when other assumptions are made.

We have incorporated our proposed logic L to the definition of e-institu-
tions. In this combination, constructs of L label edges of finite-state machines.
This allows for precisely defined and expressive edges thus extending the class
of e-institutions one can represent. Furthermore, by embedding L within e-insti-
tutions, we can exploit the model-theoretic issues in an operational framework.

3.1 Scenes

Scenes are the basic components of an e-institution, describing interactions
among agents:

Definition 9. A scene is S = 〈R, W,w0, Wf ,WA, WE , fGuard ,Edges , fLabel 〉 where

– R = {r1, . . . , rn} is the set of roles;
– W = {w0, . . . , wm} is a finite, non-empty set of states;
– w0 ∈ W is the initial state;
– Wf ⊆ W is the non-empty set of final states;
– WA is a set of sets WA = {WAr ⊆ W | r ∈ R} where each WAr, r ∈ R, is the set

of access states for role r;



– WE is a set of sets WE = {WE r ⊆ W | r ∈ R} where each WE r, r ∈ R, is the
set of exit states for role r;

– fGuard : WAr 7→ Fml and fGuard : WEr 7→ Fml associates with each access state
WAr and exit state WE r of role r a formula Fml.

– Edges ⊆ W × W is a set of directed edges;
– fLabel : Edges 7→ Fml associates each element of Edges with a formula Fml.

This definition is a variation of that found in [19]. We have added to access and
exit states, via function fGuard , explicit restrictions formulated as formulae of
L. The labelling function fLabel is defined similarly, but mapping Edges to our
formulae Fml .

3.2 Transitions

The scenes, as formalised above, are where the communication among agents
actually take place. However, individual scenes can be part of a more complex
context in which specific sequences of scenes have to be followed. For example,
in some kinds of electronic markets, a scene where agents meet other agents
to choose their partners to trade is followed by a scene where the negotiations
actually take place. We define transitions as a means to connect and relate scenes:

Definition 10. A transition is T = 〈CI , wa,Fml , we,CO〉 where

– CI ⊆
Sn

i=1(WE i×wa), is the set of connections into the transition, WE i, 1 ≤ i ≤ n

being the sets of exit states for all roles from all scenes;
– wa is the access state of the transition;
– we is the exit state of the transition;
– Fml, a formula of L, labels the pair (wa, we) 7→ Fml;
– CO ⊆

Sm

j=1(we × WAj), is the set of connections out of the transition, WAj , 1 ≤
j ≤ m being the sets of access states for all roles onto all scenes.

A transition has only two states wa, its access state, and we, its exit state, and
a set of connections CI relating the exit states of scenes to wa and a set of
connections CO relating we to the access states of scenes. The conditions under
which agents are allowed to move from wa to we are specified by a formula Fml
of our set-based logic, introduced above.

Transitions can be seen as simplified scenes where agents’ movements can be
grouped together and synchronised out of a scene and into another one. The roles
of agents may change, as they go through a transition. An important feature of
transitions lies in the kinds of formula Fml we are allowed to use. Contrary to
scenes, where there can only be references to constructs within the scene, within
a transition we can make references to constructs of any scene that connects
to the transition. This difference is formally represented by the semantics of
e-institutions below.

3.3 L-Based E-Institutions

Our e-institutions are collections of scenes and transitions:

Definition 11. An e-institution is E = 〈Scenes , S0,Sf ,Trans〉 where

– Scenes = {S0, . . . ,Sn} is a finite and non-empty set of scenes;
– S0 ∈ Scenes is the root scene;
– Sf ∈ Scenes is the output scene;
– Trans = {T0, . . . ,Tm} is a finite and non-empty set of transitions;



We shall impose the restriction that the transitions of an e-institution can
only connect scenes from the set Scenes, that is, for all T ∈ Trans, CI ⊆
⋃n

i=0(WE i × wa), i 6= f (the exit states of the output scene can not be con-
nected to a transition) and CO ⊆

⋃n

j=1(we ×WAj) (the access state of the root

scene cannot be connected to a transition).
For the sake of simplicity, we have not included in our definition above the

normative rules [5] which capture the obligations agents get bound to as they
exchange messages. We are aware that this makes our definition above closer to
the notion of performative structure [5] rather than an e-institution.

3.4 Models for L-Based E-Institutions

In this section we introduce models for scenes, transitions and e-institutions
using the definitions above.

A model for a scene is built using the formulae that label edges connecting
the initial state to a final state. The formulae guarding access and exit states
are also taken into account: they are used to extend the model of the previous
formulae and this extension is further employed with the formula connecting the
state onwards. Since there might be more than one final state and more than
one possible way of going from the initial state to a final state, models for scenes
are not unique. More formally:

Definition 12. An interpretation = is a model for a scene S = 〈R,W, w0, Wf ,WA,WE ,

fGuard ,Edges , fLabel 〉, given an initial interpretation =0, denoted by m(S, =), iff = =
=n, where:

– fLabel (wi−1, wi) = Fml i, 1 ≤ i ≤ n, wn ∈ Wf , are the formulae labelling edges
which connect the initial state w0 to a final state wn.

– for wi ∈ WAr or wi ∈ WE r for some role r, that is, wi is an access or exit state,
then fGuard (wi) = Fml [WA,i] or fGuard (wi) = Fml [WE,i], respectively.

– for 1 ≤ i ≤ n, then =i =

(

ext(ext(=i−1,Fml [WA,i]),Fml i), if wi ∈ WAr

ext(ext(=i−1,Fml [WE,i]),Fml i), if wi ∈ WEr

ext(=i−1, Fml i), otherwise

One should notice that the existential quantification allows for the choice of
components for the sets in Ω and hence more potential for different models. In
order to obtain a model for a scene, an initial model =0, possibly empty, must
be provided.

The model of a transition extends the models of scenes connecting to it:

Definition 13. An interpretation = is a model for a transition T = 〈CI , wa,Fml , we,

CO〉, denoted by m(T,=), iff
– S1, . . . , Sn are all the scenes that connect with CI , i.e. the set WE i of exit states

of each scene Si, 1 ≤ i ≤ n, has at least one element WE i,r × wa in CI , and
– m(Si,=i),=i = (σi, Ωi),=

′ = (
Sn

i=1 σi,
Sn

i=1 Ωi), 1 ≤ i ≤ n, and ext(=′, Fml) =
=

The model of a transition is an extension of the union of the models of all
its connecting scenes to accommodate Fml . Finally, we define the meaning of
e-institutions:

Definition 14. An interpretation = is a model for an e-institution E = 〈Scenes ,

S0,Sf ,Trans〉, denoted by m(E,=), iff
– Scenes = {S0, . . . ,Sn},m(Si,=), 0 ≤ i ≤ n; and
– Trans = {T0, . . . ,Tm}, m(Tj,=), 0 ≤ j ≤ m.



3.5 Building Models for L-Based E-Institutions

We can build a model = for a formula Fml if we are given an initial value for
the sets in Ω. We need only those sets that are referred to in the quantification
of Fml : with this information we can define the atomic formulae that make the
left-hand side of “⇒” true. If the conditions on the left-hand side of Fml are
fulfilled then we proceed to make the conditions on the right-hand side true, by
means of the appropriate creation of other sets.

Building a model = is a computationally expensive task, involving combina-
torial efforts to find the atomic formulae that ought to be in σ and the contents
of the sets in Ω. If, however, the formulae Fml of a scene have a simple property,
viz. the quantification of each formula Fml i only refers to sets that appear on
preceding formulae Fml j , j < i, then we can build an interpretation gradually,
taking into account each formula at a time. This property can be syntactically
checked: we can ensure that all sets appearing in Fml i quantification appears
on the right-hand side of a Fml j which leads on to Fml i in a scene. Only if
all scenes and transitions of an e-institution fulfill this property is that we can
automatically build a model for it in feasible time.

If this property holds in our e-institutions, then we can build for any for-
mula Fml i a model =i that uses the =i−1 of the preceding formula (assuming an
ordering among the edges of a path). The models of a scene are then built grad-
ually, each formula at a time, via ext(=i−1,Fml i) = =i. The quantifiers in Fml
assign values to variables in its body, following the semantic mapping k shown
previously. The existential quantifiers ∃ and ∃! introduce non-determinism: in
the case of ∃ a subset of the elements of the quantified set has to be chosen; in
the case of ∃! a single element has to be chosen. Additional constraints on the
choice to be made can be expressed as part of Fml .

Given an initial interpretation = = (∅, Ω) in which Ω is possibly empty or
may contain any initial values of sets, so that we can start building the models of
the ensuing formulae. Given =i−1 and Fml i we can automatically compute the
value ext(=i−1,Fml i) = =i. Since the quantifiers of Fml i only refer to sets of
the right-hand side of preceding Fml j , then =i−1 should have the actual contents
of these sets. We exhaustively generate values for the quantified variables – this
is only possible because all the sets are finite – and hence we can assemble the
atomic formulae for a possible σi of =i. With this σ and Ωi−1 we then assemble
Ωi, an extension of Ωi−1 which satisfies the set constraints of Fml i.

3.6 Example: A Simple Agoric Market

We illustrate the definitions above with an example comprising a complete vir-
tual agoric marketplace. We provide in Fig. 2 a graphic rendition of an e-institu-
tion for our market – the same e-institution is, of course, amenable to different

DepartureAdmission

1 1.1

SettlementAgora
Room

2 2.1 3 5 5.1

4 4.1

3.1

t1

t2 t3

t4

t5

Fig. 2: E-Institution for Simple Agoric Market

visual renditions. Scenes are represented as boxes with rounded edges; the root



scene Admission has a thicker box and the output scene Departure has a
double box. Transitions are represented as triangles. The arcs in our diagram
connect exit states of a scene with the access state of a transition and the exit
state of a transition with an access state of a scene. Agents have to be ini-
tially admitted in the e-institution (Admission scene) where their details are
recorded; agents then may proceed to trade their goods in the Agora Room

scene, after which they may (if they have bought or sold goods) have to settle
any debts in the Settlement scene. Finally, agents leave the institution, via the
Departure scene.

We now focus on a specific scene in the e-institution above. In Fig. 3 we “zoom
in” on the Agora Room scene, in which agents willing to acquire goods interact

OutSs

OutBs :

: seller

buyer
Fml 3

Fml 1
Fml2

Ss

Bs :

:

buyer

seller

Fml0

0
w w

1
w

2

Fig. 3: Diagram for Agora Room Scene

with agents intending to sell such goods. This agora scene has been simplified
– no auctions or negotiations are contemplated. The sellers announce the goods
they want to sell and collect the replies from buyers (all buyers must reply).
The simplicity of this scene is deliberate, so as to allow us to fully represent and
discuss it. A more friendly visual rendition of the formal definition is employed
in the figure and is explained below.

The states W = {w0, w1, w2} are displayed in circles and Edges = {(w0, w1),
(w1, w2)} are shown as arrows: if (wi, wj) ∈ Edges , then wi −→ wj . The initial
state w0 is shown enclosed in a thicker circle; the final state Wf = {w2} is
enclosed in a double circle. We define the set of roles as R = {seller , buyer}. An
access state w ∈ WA is marked with a “I” pointing towards the state with a
box containing the role(s) of the agents that may enter the scene at that point
and a set name. Exit states are also marked with a “I” but pointing away from
the state; they are also shown with a box containing the roles of the agents that
may leave the scene at that point and a set name. We have defined the formulae
Fml i, 0 ≤ i ≤ 3, as:

Fml0: ∃B, S ∈ Ags
((

m(B, adm, enter(buyer)) ∧
m(S, adm, enter(seller))

)

⇒
(

B ∈ Bs ∧ 1 ≤ |Bs| ≤ 10 ∧
S ∈ Ss ∧ 1 ≤ |Ss| ≤ 10

))

Fml1: ∀S ∈ Ss ∀B ∈ Bs ∃I ∈ Is (m(S ,B , offer(I , P )) ⇒ 〈S ,B , I , P 〉 ∈ Ofs)
Fml2: ∀〈S, B, I, P 〉∈Ofs∃!A∈As(m(B, S, reply(I, P, A))⇒〈B, S, I, P, A〉∈Rs)

Fml3: ∀B ∈ Bs ∀S ∈ Ss
((

m(B, adm, leave) ∧
m(S, adm, leave)

)

⇒
(

B ∈ OutBs ∧ S ∈ OutSs ∧
OutBs = Bs ∧ OutSs = Ss

))

The left-hand side of the Fml i are atomic formulae which must hold in σi and
the right-hand side are set constraints that must hold in Ωi. The atomic formula
stand for messages exchanged among the agents as they move along the edges
of the scene. The above definitions give rise to the following semantics:

ext(
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∅,
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ff«
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,
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o

«

We assume that Ags = {ag1, . . . , ag4}, As = {ok , not ok} and Is = {car , boat , plane},
and we obtain Bs = {ag2, ag3} and Ss = {ag1};

ext(=0,Fml1) = =1 =
“
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n

m(ag
1
, ag

2
, offer(car , 4)),
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where Ofs = {〈ag1, ag2, car , 4〉, 〈ag1, ag3, boat , 3〉};

ext(=1,Fml2)==2 =

„
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Ags, As, Is,
Bs, Ss, Ofs,
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ff«

where Rs = {〈ag2, ag1, car , 4, ok 〉, 〈ag3, ag1, boat , 3, not ok 〉};

ext(=2,Fml3) = =3 =

„
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where OutBs = {ag2, ag3} and OutSs = {ag1}.
Intuitively, the σi provide “snapshots” of those messages that were sent up to

a particular state: the record of the messages sent characterises the state of the
scene. Each state is associated with a σi and Ωi. We explicitly list the messages
that should be sent at each state of the scene, indicating that the complete set
σi is an extension of σi−1. The contents of the sets in Ωi shown above repre-
sent information relevant for defining future steps in the global protocol. This
information is gathered as the protocol is followed and it defines the subsequent
steps.

The semantics of transitions is defined similarly. However, the sets over which
the formulae Fml in Ti are quantified are built by merging the sets of all those
scenes that are connected to the transition, as formally stated in definition 13
above.

3.7 Design Rationale of L

The class of protocols we aim at require the unambiguous reference to details of
previous interactions so as to determine the ensuing message exchanges among
the participating agents. In the example above, the model is gradually built
taking any such restrictions into account: the quantification of the formulae
labelling each edge ensures that restrictions be taken into account. For instance,
Fml2 restricts the interaction and only permits buyer agents send messages;
these messages must be a reply to their respective offers. This is only possible
because the semantics of L allows the reference to sets built to store any relevant
information as edges are followed. This information is then employed via the
quantifiers to restrict ensuing steps of the protocol. We are thus able to capture
dynamic aspects of the protocol in a generic and abstract fashion.

The logic L, a restricted form of first-order logic, has been engineered for our
purposes of labelling connections of a finite-state machine. The set quantifica-
tions are just a notational variant of first-order quantification. It is easy to see
that, for any arbitrary formula α, if ∀X ∈ Set. α holds then ∀X.X ∈ Set∧α also
holds. The same is true for the other quantifiers ∃ and ∃!. The set constraints
are just first-order predicates whose intended meaning has been “hardwired” to
the underlying semantics.

There are connections between L and many-sorted logics [4]. The sets em-
ployed in our quantifications can be viewed as explicit sorts. However, the set
constraints do not have a counterpart in many-sorted logics since sets are not
part of the allowed syntax. Set-based logics are not more powerful than stan-
dard first-order logic [4]. However, we have decided to employ a set-based logic
to provide for a more disciplined design with a cleaner representation. Clearly,
all the sets of an L formula can be put together as one single set (i.e. the union



of all sets) but if we needed to differentiate among elements (say, agents that
are of different roles) then we should provide extra means. Another advantage
of set-based logics stems from the potential reduction on the search space for a
model: if our universe of discourse is organised in sets, our search procedure can
concentrate only on the sets concerned with the formulae, thus avoiding having
to unnecessarily examine large numbers of spurious elements.

3.8 Representing and Checking L-Based E-Institutions

L-based e-institutions can be readily represented in many different ways. We
show in Fig. 4 a Prolog [1] representation for the Agora Room scene graphi-

roles(market,agora,[buyer,seller]). states(market,agora,[w0,w1,w2,w3]).
initial state(market,agora,w0). final states(market,agora,[w3]).
access states(market,agora,[buyer:[w0],seller:[w0,w2]]).
exit states(market,agora,[buyer:[w3],seller:[w1,w3]]).
edges(market,agora,[(w0,w1),(w1,w2),(w2,w3)])
guard(market,agora,w0,[exists(B,agents),exists(S,agents)],

[m(B,adm,enter(buyer)),m(S,adm,enter(seller))],
[in(B,buyers),1 =< card(buyers) =< 10,
in(S,sellers),1 =< card(buyers) =< 10]).

label(market,agora,w0,w1,[forall(S,sellers),forall(B,buyers),exists(I,items)],
[m(S:seller,B:buyer,offer(I))],
[in([S,B,I],offers)]).

. . . Fig. 4: Representation of Agora Room Scene

cally depicted in Fig. 3 above. Each component of the formal definition has its
corresponding representation. Since many e-institutions and scenes may co-exist,
the components are parameterised by the e-institution and scene names (first
and second parameters, respectively). The fGuard component is represented as a
guard/6 term; to save space, we only show the first of them. Component fLabel

is represented as label/7 – we only show the first of them to save space. Both
guard/6 and label/7 incorporate the same representation for L formulae, in
their last three arguments: a list for the quantifications Qtf , a list for the con-
junction Atfs and a list for the set constraints SetCtrs. The actual coding of the
logical constructs into a Prolog format is done in a simple fashion: “∀x ∈ Set” is
coded as forall(X,set), “∃x ∈ Set” is encoded as exists(X,set), “x ∈ Set”
(set operation) is encoded as in(X,set) and so on.

The terms standing for the messages sent in the labels of our representation
have been augmented with information on the role of the agents which sent them
(and the roles of the agents the messages are aimed at). In our example above,
the roles seller and buyer were added, respectively, to the first and second
arguments of the message, that is, m(S:seller,B:buyer,offer(I). We shall
use this information when we automatically synthesise agents to enact our e-
institutions, as explained below. This information can be inferred from the scene
specification, by propagating the roles adopted by the agents which entered the
scene in access states. We have adopted the standard messages enter(Role) and
leave in our scenes to convey, respectively, that the agent wants to enter the
scene and incorporate Role and that the agent wants to leave the scene.

The representation above renders itself to straightforward automatic checks
for well-formedness. For instance, we can check whether all label/7 terms are
indeed defined with elements of states/3, whether all label/6 are defined either
for access states/3 or exit states/3, if all access states/3 and exit stat-
es/3 have their guard/6 definition, whether all pairs in edges/3 have a corre-
sponding label/7, and so on. However, the representation is also amenable for



checking important graph-related properties using standard algorithms [3]. It is
useful to check, for instance, if from the state specified in initial state/3 we
can reach all other states/3, whether there are states/3 from which it is not
possible to reach an exit state (absence of sinks), and so on.

The use of logics for labels in our e-institutions also allows us to explore
logic-theoretic issues. Given a scene, we might want to know if the protocol it
describes is feasible, that is, if it is possible for a number of agents to success-
fully enact it. This question amounts to finding out whether there is at least one
path connecting the initial (access) state to a final (exit) state, such that the
conjunction of the formulae labelling its edges is satisfiable, that is, the conjunc-
tion has at least one model. Since the quantified sets in our formulae are finite
then the satisfiability test for conjunctions of L formulae has the same com-
plexity of propositional logic: each atomic formula with variables can be seen as
a conjunction of atomic formulae in which the variables are replaced with the
actual values over which they are quantified; atomic formulae without variables
amount to propositions (because they can be directly mapped to > or ⊥). There
are algorithms to carry out the satisfiability test for propositional logic which
will always terminate [4, 13]. Model-checking techniques (e.g., [9] and [10]) come
in handy here, helping engineers to cope with the exponential complexity of this
problem.

Transitions are represented in a similar fashion. We show in Fig. 5 how we
represented transition T1 of our agoric market e-institution of Fig. 2. Transition

access state(market,t1,w0). exit state(market,t1,w1).
connections into(market,t1,[(admission,client:[w2])]).
connections outof(market,t1,[(agora,buyer:[w0]),(agora,seller:[w0])]).
label(market,t1,w0,w1,[exists(C,registered clients)],

[m(C,adm,move(agora))],
[in(C,agora agents)]).

Fig. 5: Representation of Transition T1

T1 guarantees that only those agents that successfully registered in the Admis-

sion scene (their identification being included in the set registered clients)
and that showed their interest in joining the Agora Room scene (by sending the
message m(C,adm,move(agora))) will be able to move through it. We employed
the same label/7 construct as in the scene representation, but here it stores the
Fml labelling the edge connecting w0 and w1 in the transition.

The above representation for transitions is also amenable for automatic checks.
We can automatically verify, for instance, that the scenes, states and roles re-
ferred to in connections into/3 and connections outof/3 are properly de-
fined. A desirable property in transitions is that the connecting scenes have
at least one model – this property, as explained above, can be automatically
checked. E-institutions are collections of scenes and transitions in the format
above, plus the extra components of the tuple comprising its formal definition.

3.9 Enacting L-Based E-Institutions

We have incorporated the concepts above into a distributed enactment platform.
This platform, implemented in SICStus Prolog [17], uses the semantics of our
constructs to perform a simulation of an e-institution. The platform relies on
a number of administrative agents, implemented as independent processes, to
overlook the enactment, building models and interacting with the agents par-



taking the enactment via a blackboard architecture, using SICStus Linda tuple
space [2, 17].

The platform starts up for each scene an administrative agent admScene. An
initial model is available for all scenes, = = (∅, Ω) where Ω (possibly empty)
contains the values of any sets that need to be initially defined. Some of such
sets are, for instance, the identity of those agents that may join the e-institution,
the possible values for items and their prices, and so on. Agent admScene follows
the edges of a scene, starting from w0 and, using =, creates the set σ0 of atomic
formulae. Set σ0 is assembled by evaluating the quantification of L0 over the sets
in Ω.

An enactment of an e-institution begins with the enactment of the root scene
and terminates when all agents leave the output scene. Engineers may specify
whether a scene can have many instances enacted simultaneously, depending
on the number and order of agents willing to enter it. We did not include this
feature in our formal presentation because in logic-theoretic terms instances of
a scene can be safely seen as different scenes: they are enacted independently
from each other, although they all conform to the same specification.

Our platform takes into account the agents that will partake it. These are
called the performing agents and are automatically synthesised from the de-
scription of the e-institution, as described in [19]. A performing agent sends a
message by checking if the corresponding σ set contains the message it wants to
send; if the message is available then the agent “sends” it by marking it as sent.
This mark is for the benefit of the admScene agent: the admScene agent creates
templates for all messages that can be sent, but not all of them may in fact be
sent. The messages that have been marked as sent are those that were actually
sent by the performing agents.

Similarly, a performing agent receives a messages by marking it as received.
However, it can only receive a message that has been previously marked as sent
by another agent. Both the sending and receiving agents use the format of the
messages to ensure they conform to the format specified in the edge they are
following. To ensure that an agent does not try to receive a message that has not
yet been marked as sent but that may still be sent by some agent, the admScene
agent synchronises the agents in the scene: it first lets the sending agents change
state by moving along the corresponding edge, marking their messages as sent.
When all sending agents have moved, then the admScene agent lets the receiving
agents receive their messages and move to the following state of the scene.

The synchronisation among the agents of a scene is achieved via a simple
semaphore represented as a term in the tuple space. The performing agents trying
to send a message must wait until this semaphore has a specific value. Likewise,
the agents that will receive messages are locked until the semaphore allows them
to move. The performing agents inform to the admScene agent, via the tuple
space, the state of the scene they are currently at. With this information the
admScene agent is able to “herd” agents from one state to another, as it creates
messages templates, lets the sending agents mark them as sent and then lets the
receiving agents mark them as received (also retrieving their contents). Those
agents that do not send nor receive can move between states without having
to wait for the semaphore. All agents though synchronise at every state of the



scene, that is, there is a moment in the enactment when all agents are at state
wi, then after sending and receiving (or just moving) they are all at state wi+1.

Transitions are enacted in a similar fashion. The platform assigns an agent
admTrans to look after each transition. Transitions, however, differ from scenes
in two ways. Firstly, we do not allow instances of transitions. This is strictly
a methodological restriction, rather than a technical one: we want transitions
to work as “meeting points” for agents moving between scenes and instances of
transitions could prevent this. Secondly, transitions are permanent, that is, their
enactment never comes to an end. Scenes (or their instances), once enacted (i.e.
all the agents have left it at an exit state), cease to exist, that is, the admScene
agent looking after it stops.

When a scene comes to an end, the admScene agent records in the tuple space
the model it built as a result of the scene’s enactment. The atomic formulae are
only important during the enactment since they actively define the interpreta-
tions being built. However, only the sets in the Ω part of the interpretation is
left as a record of the enactment. This is useful for following the dynamics of the
e-institution, and it is also essential for the transitions. The admTrans agents
looking after transitions use the sets left behind by the admScene agents to build
their models.

A model can be explicitly represented and used to guide the distributed en-
actment of a L-based e-institution. The model representation should be shared
by all administrative agents which would use it instead of building its own
(sub-)model. Variations of an enactment can still be explored by using par-
tially defined models, in which variables are allowed as part of the atfs in σi.
For instance, σ1 of our previous agora room scene example, could be defined as
σ1 = {m(Ag1,Ag2, offer (I1, P1)), m(Ag3,Ag4, offer(I2, P2))} ∪ σ0 that is, the actual
values of the agents’ identification and items/price are not relevant, but there
should be exactly two such messages. Restrictions can be imposed or relaxed by
adequately using variables or specific values.

4 Conclusions and Future Work

In this paper we have presented a formalism to represent global protocols, that
is, all possible interactions among components of a multi-agent system, from
a global perspective. The proposed formalism is L a set-based restricted kind
of first-order logic that allows engineers to describe a protocol and to forge
relationships among messages of one-to-one, one-to-many and many-to-many
interactions.

We have put this formalism to work by embedding it within the definition of
electronic institutions [5], giving rise to L-based electronic institutions. Existing
formulations of electronic institutions, e.g. [5, 6, 14, 19], resort to informal expla-
nations when defining the meaning of their constructs. Our rendition, on the
other hand, has its syntax and semantics formally defined using L. We have also
presented an implementation of a platform to enact e-institutions represented in
our formalism. Our proposal has been exploited for rapid prototyping of large
Multi-Agent Systems [20].

Our platform is a proof-of-concept prototype, engineered with two principles
in mind: a minimum number of messages should be exchanged and a maximum



distribution and asynchrony among processes should be achieved. Its distributed
implementation allows its scale-up: more machines can be used to host its agents.
Starting from an e-institution description in our formalism, represented as a se-
quence of Prolog constructs, the platform starts up a number of administrative
agents to overlook the scenes and transitions. The same e-institution formula-
tion is employed to synthesise the agents that will perform in the e-institution,
following our approach described in [19]. The specification of the e-institution
is used to guide the synthesis of the performing agents and also to control the
execution of the administrative agents.

The e-institutions are represented as Prolog terms, in a declarative fashion.
We have noticed that this representation is amenable for many different sorts of
manipulation. We have used it, for instance, to synthesise agents [18, 19] – these
are guaranteed to conform to the e-institution they were synthesised from – and
also to guide the execution of general-purpose administrative agents. However,
the declarative representation also allows for desirable properties to be checked
before we run the e-institution, as explained before.

Our implementation does not take into account message loss or delays. We
also assume that there are no malignant agents intercepting messages and imper-
sonating other agents. Our platform can be seen as an idealised correct version
of a multi-agent system to be built, whereby the performing agents stands for
“proxies” of foreign heterogeneous agents, guaranteed to follow an e-institution.
The practical security issues that actual heterogeneous agents are prone to are
not transferred on to the e-institution platform. We are working on how agents
synthesised from the e-institution specification [19] could be presented to foreign
agents and customised as their proxy agents.
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