Expressive Global Protocols via
Logic-Based Electronic Institutions

Wamberto W. Vasconcelos
Department of Computing Science, University of Aberdeen, Aberdeen AB24 3UE, UK
Phone: +44 (0)1224 272283, Fax: +44 (0)1224 273422

wvasconcelos@acm.org

ABSTRACT

Communication is the key feature of Multi-agent Systems.
The interactions among components of a system may take
many distinct forms of increasing complexity such as in auc-
tions, negotiations and argumentations. In this paper we
propose a notation to specify and reason about an expressive
class of protocols. Our notation is logic-based, employing a
restricted form of first-order constructs added with sets. We
formally associate the syntax of our constructs with a pre-
cise semantics. The semantics enables us to automatically
build explicit models which can be used to restrict the possi-
ble executions of a given Multi-Agent System. Our notation
has been incorporated to a variant of electronic institutions —
an encompassing and flexible approach to specify open agent
organisations — and we have implemented a proof-of-concept
platform to enact arbitrary protocols using our notation.

1. INTRODUCTION

A defining property of a multi-agent system (MAS) is the
communication among its components: a MAS can be de-
picted by the kinds and order of messages its agents ex-
change [17]. We adopt the view that the design of MASs
should thus start with the study of the exchange of mes-
sages, that is, the protocols among the agents, as explained
in [19]. Such protocols are called global because they depict
every possible interaction among all components of a MAS.

We propose a logic-based formalism that allows the rep-
resentation of a useful class of protocols involving many
agents. This formalism combines first-order logic and set
theory to allow the specification of interactions among agents,
whether an auction, a more sophisticated negotiation or an
argumentation framework. We introduce and exploit the
logic-based formalism within the context of electronic insti-
tutions: these are means to modularly describe open agent
organisations. As well as providing a flexible syntax for dia-
logues, we also formalise their semantics via the construction
of models. This paper also presents a distributed implemen-
tation of a platform to enact electronic institutions specified

This paper has been accepted as a poster at the International Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS), Melbourne,
Australia, 14-18 July 2003.

This version is available as Technical Report AUCS/TR0301, De-
partment of Computing Science, University of Aberdeen.

in our formalism.

Current efforts at standardising agent communication lan-
guages like KIF and KQML [13] and FIPA-ACL [8] do not
cater for dialogues: they do not offer means to represent re-
lationships among messages. Work on dialogues (e.g. [12],
[16] and [22]), on the other hand, prescribe the actual for-
mat, meaning and ultimate goal of the interactions. Our
effort aims at providing MASs engineers with a notation for
specifying interactions among the components of a MAS,
but which allows relationships to be forged among the inter-
actions. A typical interaction we are able to express in our
formalism is “all seller agents advertise their goods; after
this, all buyer agents send their offers for the goods to the
respective seller agent”. In this interaction, it is essential
that the buyer agents send offers to the appropriate seller
agents, that is, each seller agent should receive an appropri-
ate offer to the good(s) it advertised.

The ultimate goal of our approach is to use the specifi-
cation of the protocols to synthesise the individual compo-
nents of a MAS [20, 21]. The kinds and order of messages
exchanged among the components of the system are all ex-
plicitly represented and give rise to the actual agents that
will enact the protocol. Our formalism can express many-to-
many protocols (and, in particular, one-to-one, one-to-many
and many-to-one interactions), allowing the specification of
a broad class of interactions among agents, whether an auc-
tion, a more sophisticated negotiation or an argumentation
framework.

In Section 2 we describe the syntax and semantics of our
proposed logic-based formalism to describe protocols. In
Section 3 we introduce a definition of electronic institutions
using our logic-based notation for protocols giving their for-
mal meaning; in that section we illustrate our approach with
a practical example and we describe how we implemented
a platform to enact electronic institutions expressed in our
formalism. In Section 4 we explain how our approach has
been exploited for quickly building prototypes for MASs.
Finally, in Section 5 we discuss our work, draw conclusions
and give directions for future work.

2. ASET-BASED LOGICFORPROTOCOLS

In this section, we describe a set-based first-order logic £
with which we can define protocols. Our proposed logic
provides us with a compact notation to formally describe re-
lationships among messages in a protocol. Intuitively, these
constructs define (pre- and post-) conditions that should
hold in order for agents to follow a protocol.

We aim at a broad class of protocols in which many-to-

many interactions (and, in particular, one-to-one, one-to-
many and many-to-one) can be formally expressed. The
protocols are global in the sense that they describe any and
all interactions that may take place in the MAS. One exam-
ple of the kind of interactions we want to be able to express
is “an agent x sends a message to another agent y offering
an item k for sale; agent y replies to x’s message making an
offer n to buy k£” and so on. We define £ as below:

Def. L consists on formulae Qtf (Atfs = SetCtrs) where Qtf
is the quantification, Atfs is a conjunction of atomic formulae
and SetCltrs is a conjunction of set constraints.

Qtf provides our constructs with universal and existential
quantification over (finite) sets; Atfs expresses atomic for-
mulae that must hold true and SetCftrs represents set con-
straints that (are made to) hold true. We define the classes
of constructs Qtf, Atfs and SetCtrs in the sequel. We refer
to a well-formed formulae of £ generically as Fml.

We shall adopt some notational conventions in our formu-
lae. Sets will be represented by words starting with capital
letters and in this typefont, as in, for example “S”, “Set”
and “Buyers”. Variables will be denoted by words starting
with capital letters in this typefont, as in, for example, “X”,
“Var” and “Buyer”. We shall represent constants by words
starting with non-capital letters in this font; some examples
are “a” and “item”. We shall assume the existence of a re-
cursively enumerable set Vars of variables and a recursively
enumerable set Consts of constants.

In order to define the class Atfs of atomic formulae con-
junctions, we first put forth the concept of terms:

Def. All elements from Vars and Consts are in Terms. If t1,... ,
ty are in Terms, then f(t1,...,tn) is also in Terms, where f is
any functional symbol.

The class Terms is thus defined recursively, based on vari-
ables and constants and their combination with functional
symbols. An example of a term using our conventions is
enter(buyer). We can now define the class Atfs:

Def. If t1,...,t, are Terms, then p(ti,...,tn) is an atomic
formula (or, simply, an atf), where p is any predicate symbol. A
special atomic formula is defined via the “=” symbol, as t; = ta.
The class Atfs consists of all atfs; furthermore, for any Atf; and
Atfy in Atfs, the construct Atf; A Atfq is also in Atfs.

This is another recursive definition: the basic components
are the simple atomic formulae built with terms. These
components (and their combinations) can be put together
as conjuncts.

We now define the class of set constraints. These are
restrictions on set operations such as union, intersection,
Cartesian product and set difference [10]:

Def. Set constraints are conjunctions of set operations, defined
by the following grammar:

SetCtrs — SetCtrs A SetCtrs | (SetCtrs) | MTest | SetProp

MTest — Term € SetOp | Term & SetOp
SetProp — card(SetOp) Op N | card(SetOp) Op card(SetOp)
| SetOp = SetOp
Op—=1[>]2]|<]|<
SetOp — SetOp U SetOp | SetOp N SetOp | SetOp — SetOp
| SetOp x SetOp | (SetOp) | Set | 0
MTest is a membership test, that is, a test whether an ele-
ment belongs or not to the result of a set operation SetOp
(in particular, to a specific set). SetProp represents the set
properties, that is, restrictions on set operations as regards
to their size (card) or their contents. N is the set of natu-
ral numbers. Op stands for the allowed operators of the set
properties. SetOp stands for the set operations, that is, ex-
pressions whose final result is a set. An example of a set con-

straint is B € Buyers A card(Buyers) > 0 A card(Buyers) < 10.

We may, alternatively, employ |Set| to refer to the cardinal-
ity of a set, that is, |Set| = card(Set). Additionally, in order
to simplify our set expressions and improve their presenta-
tion, we can use 0 < |Buyers| < 10 instead of the expression
above.
Finally, we define the quantifications Qtf:
Def. The quantification Qtf is defined as:
Qif — Qtf’ Qtf | Qif’
Qtf' — Q Var € SetOp | Q Var € SetOp, Var = Term
Q—v|3|3
Where SetOp is any set operation, Term is any term (see above)
and Var is any variable from Vars.
We pose an important additional restriction on our quan-
tifications: either Var or subterms of Term must occur in
(Atfs = SetCtrs).
Using the typographic conventions presented above, we
can now build correct formulae; an example is

3B € Ags (m(B, adm, enter(buyer)) = (B €Bs A 1< |Bs| <10))

To simplify our formulae, we shall also write quantifica-
tions of the form Qtf Var € SetOp, Var = Term simply
as Qtf Term € SetOp. For instance, VX € Set, X = f(a, Z)
will be written as Vf(a, Z) € Set.

2.1 The Semantics of ¢

In this section we show how F'ml is mapped to truth values
T (true) or L (false). For that, we first define the interpre-
tation for our formulae:
Def. An interpretation S for Fml is the pair S = (o, Q) where
o is a possibly empty set of ground atomic formulae (i.e. atfs
without variables) and Q2 is a set of sets.
Intuitively our interpretations provide in ¢ what is required
to determine the truth value of Qtf(Atfs) and in Q what is
needed in order to assign a truth value to Qtf (SetCltrs).
We did not include in our definition of interpretation above
the notion of universe of discourse (also called domain) nor
the usual mapping between constants and elements of this
universe, neither the mapping between function and pred-
icate symbols of the formula and functions and relations
in the universe of discourse [5, 14]. This is because we are
only interested in the relationships between Atfs and SetCtrs
and how we can automatically obtain an interpretation for
a given formula. However, we can define the union of all
sets in 2 as our domain. It is worth mentioning that the
use of a set of sets to represent {2 does not cause undesirable
paradoxes: since we do not allow the formulae in £ to make
references to €2, but only to sets in €2, this will not happen.
The semantic mapping k : Fml x S — {T, L} is:
1. k(VTerms € SetOp Fml, <) = T iff
k(Fmi|Tems &) =T for all e € k/(SetOp,)
k(3Terms € SetOp Fml,) = T iff
Kk(Fmi|Terms &) = T for some e € k/(SetOp,)
k(3! Terms € SetOp Fml,) = T iff
k(Fmi|Terms &) = T for a single e € k/(SetOp, 3)
2. k((Atfs = SetCtrs),) = L iff
k(Atfs,¥) = T and k(SetCtrs, ¥) = L
3. k(Atfsy A Atfs,,S) = T iff k(Atfs,,) = k(Atfs,,) =T
K(Atf,S) = T iff Atf € 0,3 = (0,Q)
4. k(SetCtrsy N SetCtrsa, ¥) = T iff
k(SetCtrs1,) = k(SetCtrs2,3) =T
k(Terms € SetOp,) = T iff Terms € k’(SetOp, I);
k(Terms ¢ O,3) = T iff Terms ¢ k/(SetOp,)
5. k(|SetOp| Op N, Q) = T iff |k’(SetOp,)| Op N holds.
k(|SetOp,| Op |SetOp,|,F) = T iff
|k’(SetOp,,S)| Op |k’ (SetOps,)| holds
k(SetOp; = SetOp,,) = T iff
k/(SetOpq,) = k/(SetOp,,)

In item 1 we address the three quantifiers over Fml formulae,
where Fml|T#™* is the result of replacing every occurrence
of Terms by e in Fml. Item 2 describes the usual mean-
ing of the right implication. Item 3 formalises the mean-
ing of conjunctions Atfs and the basic case for individual
atomic formulae — these are only considered true if they be-
long to the associated set o of the interpretation . Item 4
formalises the meaning of the conjunct and disjunct opera-
tions over set constraints SetCtrs and the basic membership
test to the result of a set operation SetOp. Item 5 describes
the truth-value of the distinct set properties SetProp. These
definitions describe only one case of the mapping: since ours
is a total mapping, the situations which are not described
represent a mapping with the remaining value T or L.

The auxiliary mapping k' : SetOp x & +— Set in 9,3 =
(0,), referred to above and which gives meaning to the set
operations is thus defined:

1. k'(SetOp, U SetOpy, F) =

{e]| e € kK'(SetOp;,3) or e € k/(SetOp,,)}
2. k/(SetOp; N SetOp,,) =
{e| e € kK'(SetOp;,S) and e € k/(SetOp,, I)}
3. k/(SetOp; — SetOp,,) =
{e| e € kK'(SetOp;,S) and e & k/(SetOp,, I)}
4. k/'(SetOp; x SetOp,,) =
{(e1,e2) | e1 € K/ (SetOp,, <)

5. k'((SetOp),I) = (k' (SetOp,)).

6. k'(Set,3) = {e | e € Set in QS = (0, Q)}, K'(0,3) = 0.
The 4 set operations are respectively given their usual defini-
tions [10]. The meaning of a particular set Set is its actual
contents, as given by in &. Lastly, the meaning of an
empty set () in a set operation is, of course, the empty set.

We are interested in models for our formulae, that is, in-
terpretations that map F'ml to the truth value T (true). We
are only interested in those interpretations in which both
sides of the “=" in the Fml’s hold true. Formally:

Def. An interpretation & = (0,9) is a model for Fml =
Qtf (Atfs = SetCtrs), denoted by m(Fml,<) iff o and
Q are the smallest possible sets such that k(Qtf Atfs,S) =
k(Qtf SetCtrs,3) =T.

The scenarios arising when the left-hand side of the Fml is
false do not interest us: we want this formalisation to re-
strict the meanings of our constructs only to those desirable
(correct) ones. The study of the anomalies and implications
caused by not respecting the restrictions of a protocol albeit
important is not in the scope of this work.

We now define the extension of an interpretation, neces-
sary to build models for more than one formula Fml:

and ez € k/(SetOp,, I)}

Def. &' = (¢/,€) is an extension of & = (o,) which accommo-
dates Fml, denoted by ext(S, Fml) = ¥/, iff m(Fml, "), 3" =
(¢7,")and o/ =ocUd”, Q' =QUQ".

3. LOGIC-BASED E-INSTITUTIONS

In the same way that social institutions, such as a consti-
tution of a country or the rules of a club, are somehow
forged (say, in print or by common knowledge), the laws
that should govern the interactions among heterogeneous
agents can be defined by means of electronic institutions
(e-institutions, for short) [6, 7, 15]. E-institutions are non-
deterministic finite-state machines describing possible inter-
actions among agents. The interactions are only by means
of message exchanges, that is, messages that are sent and re-
ceived by agents. E-institutions define communication pro-
tocols among agents with a view to achieving global and
individual goals.

We noticed that although different formulations of e-insti-
tutions can be found in the literature [6, 7, 15, 20], they
all demand additional informal explanations concerning the
precise meaning of its constructs. In an e-institution the
interactions among agents are described as finite-state ma-
chines with messages labelling the edges between two states.
A simple example is graphically depicted in Figure 1 below:
two agents x and y engage in a simple two-step conversa-
tion: agent x informs agent y that it wants to sell item k

m(z,y,sell(k)) m(y,@,offer(k,n))

Figure 1: Protocol as a Finite-State Machine

and y replies with an offer n. In the example above we em-
ployed variables x,y, k and n but it is not clear what their
actual meaning is: is x the same in both edges? is it just
one agent x or can many agents follow the transition? It is
not clear from the notation only what the meaning of the
label is. Surely, informal explanations could solve any am-
biguity, but by tacitly assuming the meaning of constructs
(i.e. “hardwiring” the meaning to the syntax), then vari-
ations cannot be offered. For instance, if we assume that
the variables in Figure 1 are universally quantified, then it
is not possible to express the existential quantification and
vice-versa. Similar expressiveness losses occur when other
assumptions are made.

We have incorporated our proposed logic £ to the defini-
tion of e-institutions. In this combination, constructs of £
label edges of finite-state machines. This allows for precisely
defined and expressive edges thus extending the class of e-
institutions one can represent. Furthermore, by embedding
L within e-institutions, we can exploit the model-theoretic
issues in an operational framework.

3.1 Scenes

Scenes are the basic components of an e-institution, describ-
ing interactions among agents:
Def. A scene is S = (R, W,wo, Wy, WA, WE, fGuard Edges,
fL(Lbel> where
e R={ri,...,rn} is the set of roles;
W = {wo,... ,wm} is a finite, non-empty set of states;
wo € W is the initial state;
Wy C W is the non-empty set of final states;
WA is a set of sets WA = { WA, C W | r € R} where each
WA,, r € R, is the set of access states for role r;
e WE is a set of sets WE = {WE,, C W | r € R} where
each WE,, r € R, is the set of exit states for role r;
o fGuard . WA s Fml and fOud . WE, — Fml asso-
ciates with each access state WA, and exit state WE, of
role r a formula F'ml.

e FEdges C W x W is a set of directed edges;
° fLabel

: Edges — Fml associates each element of Edges
with a formula Fml.

This definition is a variation of that found in [20]. We have
added to access and exit states, via function f%“™ explicit
restrictions formulated as formulae of £. The labelling func-
tion fLete! is defined similarly, but mapping edges to our
formulae Fml.

3.2 Transitions

The scenes, as formalised above, are where the communica-
tion among agents actually take place. However, individual
scenes can be part of a more complex context in which spe-
cific sequences of scenes have to be followed. For example, in
some kinds of electronic markets, a scene where agents meet

other agents to choose their partners to trade is followed
by a scene where the negotiations actually take place. We
define transitions as a means to connect and relate scenes:
Def. A transition is T = (CI, wa, Fml, we, CO) where
o CI CUUL(WE; X wa), is the set of connections into the
transition, WE;,1 <1i < n being the sets of exit states for
all roles from all scenes;

wWgq is the access state of the transition;

we is the exit state of the transition;

Fml, a formula of £, labels the pair (wq,we) — Fml;

CcO C U;n:1(we x WA;), is the set of connections out of
the transition, WA;,1 < j < m being the sets of access
states for all roles onto all scenes.

A transition has only two states wa, its access state, and we,
its exit state, and a set of connections CI relating the exit
states of scenes to w, and a set of connections CO relating
we to the access states of scenes. The conditions under which
agents are allowed to move from w, to w. are specified by
a formula Fml of our set-based logic, introduced above.

Transitions can be seen as simplified scenes where agents’
movements can be grouped together and synchronised out
of a scene and into another one. The roles of agents may
change, as they go through a transition. An important fea-
ture of transitions lies in the kinds of formula Fml we are
allowed to use. Contrary to scenes, where there can only be
references to constructs within the scene, within a transi-
tion we can make references to constructs of any scene that
connects to the transition. This difference is formally repre-
sented by the semantics of e-institutions below.

3.3 c-Based E-Institutions

Our e-institutions are collections of scenes and transitions:
Def. An e-institution is E = (Scenes, So, Sy, Trans) where
e Scenes = {So,...,Sn} is a finite and non-empty set of
scenes;

o Sp € Scenes is the root scene;
e Sy € Scenes is the output scene;

e Trans = {To,..., Ty} is a finite and non-empty set of
transitions;

We shall impose the restriction that the transitions of an
e-institution can only connect scenes from the set Scenes,
that is, for all T € Trans, CI C U,_o(WE; X wa),i # f
(the exit states of the output scene can not be connected to
a transition) and CO C J]_, (we x WA;) (the access state
of the root scene cannot be connected to a transition).

For the sake of simplicity, we have not included in our
definition above the normative rules [6] which capture the
obligations agents get bound to as they exchange messages.
We are aware that this makes our definition above closer
to the notion of performative structure [6] rather than an
e-institution.

3.4 Models for £-Based E-Institutions

In this section we introduce models for scenes, transitions
and e-institutions using the definitions above.

A model for a scene is built using the formulae that la-
bel edges connecting the initial state to a final state. The
formulae guarding access and exit states are also taken into
account: they are used to extend the model of the previous
formulae and this extension is further employed with the
formula connecting the state onwards. Since there might be
more than one final state and more than one possible way
of going from the initial state to a final state, models for
scenes are not unique. More formally:

Def. An interpretation S is a model for a scene S = (R, W,
wo, Wy, WA, WE, fGuard Edges, fLobely | given an initial inter-
pretation So, denoted by m(S, J), iff I = Iy, where:

o flabel(w; 1,w;) = Fml;,1 < i < n,w, € Wy, are the
formulae labelling edges which connect the initial state wo
to a final state wy,.

o for w; € WA, or w; € WE, for some role r, that is, w;
is an access or exit state, then fC%e?(w;) = Fmliwa,q or
fGuard () = Fmlwg s, respectively.

e for 1 < i <n, then

ext(ext(%i_l,le[WA,i]),lei)7 if w; € WA,
Sy =4 ext(ext(Si—1, Fmlwg,y), Fmil;), ifw; € WE,
ext(Si-1, Fml;), otherwise

One should notice that the existential quantification allows
for the choice of components for the sets in €2 and hence more
potential for different models. In order to obtain a model
for a scene, an initial model o, possibly empty, must be
provided.

The model of a transition extends the models of scenes
connecting to it:

Def. An interpretation & is a model for a transition T =
(CI,wq, Fml,we, CO), denoted by m(T,), iff
e Si,...,S, are all the scenes that connect with CI, i.e.
the set WE; of exit states of each scene S;,1 < i < n, has
at least one element WE; ;. X wq in CI, and
e m(S;,), i = (04,), 9" = (UiLy 06, Uimg ©i),1 < i <
n, and ext(S’, Fml) = S

The model of a transition is an extension of the union of
the models of all its connecting scenes to accommodate L.
Finally, we define the meaning of e-institutions:

Def. An interpretation S is a model for an e-institution E =
(Scenes,So, Sy, Trans), denoted by m(E,), iff

e Scenes = {So,...,Sn}, m(S;,S),0 <i<n;and

o Trans = {To,... ,Tm}, m(T;,F),0<j < m.

3.5 Automatically Building Models

We can build a model & for a formula F'ml if we are given
an initial value for the sets in 2. We need only those sets
that are referred to in the quantification of Fml: with this
information we can define the atomic formulae that make
the left-hand side of “=" true. If the conditions on the
left-hand side of F'ml are fulfilled then we proceed to make
the conditions on the right-hand side true, by means of the
appropriate creation of other sets.

Building a model & is a computationally expensive task,
involving combinatorial efforts to find the atomic formulae
that ought to be in o and the contents of the sets in Q. If]
however, the formulae F'ml of a scene have a simple property,
viz. the quantification of each formula Fml; only refers to
sets that appear on preceding formulae Fml;,j < ¢, then we
can build an interpretation gradually, taking into account
each formula at a time. This property can be syntactically
checked: we can ensure that all sets appearing in Fml; quan-
tification appears on the right-hand side of a Fml; which
leads on to F'ml; in a scene. Only if all scenes and transi-
tions of an e-institution fulfill this property is that we can
automatically build a model for it in feasible time.

If this property holds in our e-institutions, then we can
build for any formula Fml; a model J; that uses the ;1
of the preceding formula (assuming an ordering among the
edges of a path). The models of a scene are then built gradu-
ally, each formula at a time, via ext(Si—1, F'ml;) = Sy. The
quantifiers in F'ml assign values to variables in its body,

following the semantic mapping k shown previously. The
existential quantifiers 3 and 3! introduce non-determinism:
in the case of 3 a subset of the elements of the quantified set
has to be chosen; in the case of 3! a single element has to
be chosen. Additional constraints on the choice to be made
can be expressed as part of F'ml.

Given an initial interpretation & = (0,2) in which Q is
possibly empty or may contain any initial values of sets, so
that we can start building the models of the ensuing formu-
lae. Given $;—1 and F'ml; we can automatically compute the
value ext(S;-1, Fml;) = $;. Since the quantifiers of Fml;
only refer to sets of the right-hand side of preceding Fml;,
then &;_1 should have the actual contents of these sets. We
exhaustively generate values for the quantified variables —
this is only possible because all the sets are finite — and
hence we can assemble the atomic formulae for a possible o;
of &;. With this o and €2;_1 we then assemble §2;, an exten-
sion of €2;_1 which satisfies the set constraints of Fml;.

3.6 Example: An Agora Room

To illustrate the definitions above, we provide in Figure 2
a simple example of a scene for an agora room in which

Fmlg
>)
llez

Figure 2: Diagram for Agora Room Scene
agents willing to acquire goods interact with agents intend-
ing to sell such goods. This agora scene has been simplified
— no auctions or negotiations are contemplated. The sell-
ers announce the goods they want to sell, collect the replies
from buyers (all buyers must reply) and confirm the replies.
The simplicity of this scene is deliberate, so as to allow us
to fully represent and discuss it. A more friendly visual ren-
dition of the formal definition is employed in the figure and
is explained below.

The states W = {wo, w1, w2, w3} are displayed in oval
boxes and Edges = {(wo,w1), (w1, w2), (w2, ws)} are shown
as arrows: if (w;,w;) € Edges, then w; — w;. The initial
state wo is shown enclosed in a thicker oval box; the final
state Wy = {ws} is enclosed in a double oval box. We
define the set of roles as R = {seller, buyer}. An access
state w € WA is marked with a “p” pointing towards the
state with a box containing the role(s) of the agents that
may enter the scene at that point and a set name. Exit
states are also marked with a “p” but pointing away from
the state; they are also shown with a box containing the roles
of the agents that may leave the scene at that point and a
set name. We have defined the formulae Fml;,0 < i < 4, as:
Fmlp: 3B, S € Ags

((m(B, adm, enter(buyer)) /\) = (B €Bs A 1< |Bs| <10 /\))

m(S, adm, enter(seller)) Se€Ss A 1< |Ss| <10

Bs : buyer
Ss : seller

OutBs : buyer Fmly

OutSs : seller

Fmly: VS € SsVB e Bs3dl €ls
(m(S, B, offer(I)) = (S, B, I) € Ofs)
Fmla: V(S,B,I) € Ofs 3!A € Ans
(m(B, S, reply(I, A)) = (B, S, 1, A) € Prs)
Fmls: V(B, S,I,ok) € Prs 3'A € Ans
(m(S, B, confirm(I, A)) = (S, B, 1, A) € Rs)

Fmly: VB € BsVS € Ss

m(B, adm, leave) N B € OutBs A S € OutSs A
m(S, adm, leave) OutBs = Bs A OutSs = Ss

The left-hand side of the F'ml; are atomic formulae which
must hold in ¢; and the right-hand side are set constraints
that must hold in €;. The atomic formula stand for mes-
sages exchanged among the agents as they move along the
edges of the scene. The above definitions give rise to the
following semantics:

Ags = {agy,... ,ag4},

ext(|0, ¢ Ans = {ok, not_ok},

Is = {car, boat, plane}
m(ag,, adm, enter(seller)) Ags, Ans, Is,
m(ago, adm, enter(buyer)) »< Bs = {ag,, ags}
m(agg, adm, enter(buyer)) Ss = {ag,}

ext(So, Fmli1) =S =

ooU Ags, Ans, Is, Bs, Ss,
m(agq, ags, offer(car)) Ofs = (agy, agy, car),
m(ag,, ags, offer(boat)) [’ (agy, ags, boat)

ext (S, Fmla) = Qo =
51U Ags, Ans, Is, Bs, Ss, Ofs,

,Fmlo)= S =

(ly(car, ok)) e
m(ags, ag,, reply(car, o o &

g2, agq, €ar, or),
{’m(agg7 ag,, offer(boat, not_ok))}’ { Eag; agL boat, n¢>7t_ok>}
ext (S, Fmiz) = Q3 =

Ags, Ans, Is, Bs, Ss, Ofs, Prs,

o2V Rs =
{(m(ag,, agy, confirm(car, not_ok))}, {{agy, ags, car, not_ok)}
ext(Ss, Fmly) =Sy =

a3l Ags, Ans, Is, Bs, Ss, Ofs, Prs, Rs,

m(ag,, adm, leave) OutBs = {ag,, ags}

m(agy, adm, leave) 5, OutSs = {ag,}

m(ags, adm, leave) 1

Intuitively, the o; provide “snapshots” of those messages
that were sent up to a particular state: the record of the
messages sent characterises the state of the scene. Each
state is associated with a o; and ;. We explicitly list the
messages that should be sent at each state of the scene,
indicating that the complete set o; is an extension of o;_;.

3.7 Enacting £-Based E-Institutions

We have incorporated the concepts above into a distributed
enactment platform. This platform, implemented in SIC-
Stus Prolog [18], uses the semantics of our constructs to
perform a simulation of an e-institution. The platform re-
lies on a number of administrative agents, implemented as
independent processes, to overlook the enactment, building
models and interacting with the agents partaking the en-
actment via a blackboard architecture, using SICStus Linda
tuple space [3, 18].

An administrative agent admPlatform overlooks the plat-
form as a whole. A number of e-institutions can be enacted
simultaneously in our platform. When an agent willing to
perform in an e-institution E sends a message requesting
access to a scene S from E, then the admPlatform starts
up an administrative agent admEInst to overlook the enact-
ment of E. The admPlatform agent ensures an admFEInst is
started up for every e-institution that agents want to enact,
allowing for more decentralisation.

Our enactment platform uses a hierarchy of administra-
tive agents, shown in Figure 3. The responsibility of the
admPEinst is to look after a specific e-institution. Such agents

admScene

admPlatform { admEInst { adm Trans

Figure 3: Hierarchy of Administrative Agents

are generic, following the same sequence of steps for any e-
institution the admPlatform assigns them to. The admEInst
agent looks over the enactment of the scenes and transi-
tions of an e-institution: for each agent that sends a mes-
sage wanting to enter a scene, the admFEInst starts up an

admScene agent to look after that scene. Likewise, for each
transition of an e-institution an admTrans is started up to
look after it.

An initial model is available for all admScene agents, & =
(0, ©2) where Q2 (possibly empty) contains the values of any
sets that need to be initially defined. Some of such sets are,
for instance, the identity of those agents that may join the
e-institution, the possible values for items and their prices,
and so on. Agent admScene follows the edges of a scene,
starting from wo and, using &, creates the set o of atomic
formulae. The set o¢ is assembled by evaluating the quan-
tification of Lo over the sets in €.

An enactment of an e-institution begins with the enact-
ment of the root scene and terminates when all agents leave
the output scene. Engineers may specify whether a scene
can have many instances enacted simultaneously, depend-
ing on the number and order of agents willing to enter it.
We did not include this feature in our formal presentation
because in logic-theoretic terms instances of a scene can be
safely seen as different scenes: they are enacted indepen-
dently from each other, although they all conform to the
same specification.

Our platform takes into account the agents that will par-
take it. These are called the performing agents and are au-
tomatically synthesised from the e-institution description,
as described in [20]. A performing agent sends a message
by checking if the corresponding o set contains the mes-
sage it wants to send; if the message is available then the
agent “sends” it by marking it as sent. This mark is for
the benefit of the admScene agent: the admScene agent cre-
ates templates for all those messages that can be sent. The
messages that have been marked as sent are those that were
actually sent by the performing agents.

Similarly, a performing agent receives a messages by mark-
ing it as received. However, it can only receive a message
that has been previously marked as sent by another agent.
Both the sending and receiving agents use the format of the
messages to ensure they conform to the format specified in
the edge they are following. To ensure that an agent does
not try to receive a message that has not yet been marked
as sent but that may still be sent by some agent, the adm-
Scene agent synchronises the agents in the scene: it first lets
the sending agents change state by moving along the corre-
sponding edge, marking their messages as sent. When all
sending agents have moved, then the admScene agent lets
the receiving agents receive their messages and move to the
following state of the scene.

The synchronisation among the agents of a scene is via a
simple semaphore represented as a term in the tuple space.
The performing agents trying to send a message must wait
until this semaphore has a specific value. Likewise, the
agents that will receive messages are locked until the sema-
phore allows them to move. The performing agents inform
to the admScene agent, via the tuple space, the state of
the scene they are currently at. With this information the
admScene agent is able to “herd” agents from one state to
another, as it creates messages templates, lets the send-
ing agents mark them as sent and then lets the receiving
agents mark them as received (also retrieving their con-
tents). Those agents that do not send nor receive messages
at a particular edge can move between states without having
to wait for the semaphore. All agents though synchronise
at every state of the scene, that is, there is a moment in

the enactment when all agents are at state w;, then after
sending and receiving (or just moving) they are all at state
Wi+1-

Transitions are enacted in a similar fashion. The plat-
form assigns an agent admTrans to look after each transi-
tion. Transitions, however, differ from scenes in two ways.
Firstly, we do not allow instances of transitions. This is
strictly a methodological restriction, rather than a techni-
cal one: we want transitions to work as “meeting points”
for agents moving between scenes and instances of transi-
tions could prevent this. Secondly, transitions are perma-
nent, that is, their enactment never comes to an end. Scenes
(or their instances), once enacted (i.e. all the agents have
left it at an exit state), cease to exist, that is, the admScene
agent looking after it stops.

When a scene comes to an end, the admScene agent records
in the tuple space the model it built as a result of the scene’s
enactment. The atomic formulae are only important during
the enactment since they actively define the interpretations
being built. However, only the sets in the €2 part of the inter-
pretation is left as a record of the enactment. This is useful
for following the dynamics of the e-institution, and it is also
essential for the transitions. The admTrans agents looking
after transitions use the sets left behind by the admScene
agents to build their models.

A model can be explicitly represented and used to guide
the distributed enactment of a L-based e-institution. The
model representation should be shared by all administra-
tive agents which would use it instead of building its own
(sub-)model. Variations of an enactment can still be ex-
plored by using partially defined models, in which variables
are allowed as part of the atfs in o;. For instance, o1 of
our previous agora room scene example, could be defined
m(Agy, Agy, offer(I1))
m(Ags, Agy, offer(I2))
ues of the agents’ identification and items are not relevant,
but there should be exactly two such messages. Restrictions
can be imposed or relaxed by adequately using variables or
specific values.

3.8 Checking Properties of E-Institutions

Our L-based e-institutions have been represented as Prolog
[1] terms, in a declarative fashion. We show in Figure 4 some
of the terms defining the Agora Room scene depicted above.

Terms are in the form label (EInst,Scene,StateA,StateB,
label(market,agora,out,wO,
[[exists(B,agents),exists(S,agents)],
[m(B:buyer,adm,enter ([market,agora,w0])),
m(S:seller,adm,enter([market,agora,w0]))],
(in(B,buyers) and 1 =< card(buyers) =< 10 and
in(S,sellers) and 1 =< card(sellers) =< 10)]).
label (market,agora,w0,wl,
[[forall(S,sellers),forall(B,buyers),exists(!,I,items)],
[m(S:seller,B:buyer,offer(I))],
in([S,B,I],offers)]).

as o1 = }Uao that is, the actual val-

Figure 4: Prolog Representation of a Scene

Label) describing the Label on the edge connecting StateA
and StateB in Scene of EInst. Label is a list of the form
[Qtf,Atfs,SetCtrs] representing a formula of £ in a Prolog
compatible notation. Similar terms represent transitions,
connecting (access and exit) states from different scenes.

A declarative representation is amenable to many different
sorts of manipulation. We have used it, for instance, to syn-
thesise agents [20] — these are guaranteed to conform to the
e-institution they were synthesised from — and also to guide

the execution of general-purpose administrative agents, as
depicted previously. However, the declarative representa-
tion also allows for desirable properties to be checked before
we enact/run the e-institution. For instance, we can check
the well-formedness of our e-institutions, that is, whether
all scenes, transitions, roles, states, and so on, are prop-
erly defined (e.g. the Frm labels conform to the syntax),
and whether scenes only connect to existing transitions and
vice-versa.

More interesting properties are those concerning the ac-
cessibility of all scenes and transitions, i.e., whether there
is at least one path leading from an access state of the root
scene to an exit state of an output scene, and the accessibil-
ity of their states, i.e. it is possible to reach every state in a
scene from an access state. Another important property is
the absence of “sinks”, that is, states with no outgoing edges,
and the property that the quantifiers of formulae only refer
to sets assembled in preceding formulae. These properties
have been formulated and checked in a straightforward way,
using standard graph algorithms [4].

Another class of properties are those concerning model-
theoretic issues. For instance, given an £-based e-institution,
we want to know if it is satisfiable [5, 14], that is, whether
we can find at least one model for it. The satisfiability of
an e-institution can be easily verified in an exhaustive fash-
ion: since all our sets are finite, the quantification becomes
a matter of instantiating variables to the elements of the
respective sets. The worst-case scenario arises when an e-
institution is unsatisfiable that is, we are not able to find
a model for it: this test requires an exponential number of
attempts, each element of every set being considered in turn.

4. RAPIDPROTOTYPING VIA £-BASED E-
INSTITUTIONS

We have exploited L£-based e-institutions in an approach to
rapid prototyping of large MASs [21]. Rapid prototyping
offers means to explore essential features of a proposed sys-
tem [11], promoting early experimentation with alternative
design choices and allowing engineers to pursue different so-
lutions without efficiency concerns [2, 9]. Our approach to
prototyping MASs reflects the modelling methodology pre-
sented in [19] and consists of the following steps:

1. Design of a Global Protocol — in this initial step we
prescribe the design of a global protocol, that is, a
precise description of the kinds and order of messages
that the components of the MAS can exchange via a
L-based e-institution.

2. Synthesis and Customisation of Agents — this step ad-
dresses the automatic synthesis of agents complying
with the designed e-institution [20]. Although simple,
these synthesised agents are in strict accordance with
the e-institution they originate from: their behaviours
conform to the specification of the global protocol. To
allow for the variability of the components of a MAS
and to help engineers explore the design space of indi-
vidual agents, we offer means to customise the synthe-
sised agents into more sophisticated pieces of software
[21].

3. Definition of Prototype — a prototype consists of an
L-based e-institution and a set of corresponding cus-
tomised agents. Designers may deliberately leave empty
slots in the customised agents where different design

possibilities may be pursued. These slots can be com-
pleted differently giving rise to distinct prototypes. A
visual interface is automatically generated to enable
these slots to be filled in by the designers. This in-
terface can be seen as a console to change parameters
and monitor the simulation of the prototype [21].

4. Simulation and Monitoring of the Prototype — the last
step is the simulation of the prototype and the collec-
tion of results. For this stage we enact an e-institution
using our platform explained above: agents are started
up as self-contained and asynchronous processes that
communicate by means of message-passing.

5. CONCLUSIONS & FUTURE WORK

In this paper we have presented a formalism to represent
global protocols, that is, all possible interactions among
components of a multi-agent system, from a global perspec-
tive. The proposed formalism is £ a set-based restricted
kind of first-order logic that allows engineers to describe a
protocol and to forge relationships among messages of one-
to-one, one-to-many and many-to-many interactions.

We have put this formalism to work by embedding it
within the definition of electronic institutions [6], giving rise
to L-based electronic institutions. Existing formulations of
electronic institutions, e.g. [6, 7, 15, 20], resort to informal
explanations when defining the meaning of their constructs.
Our rendition, on the other hand, has its syntax and se-
mantics formally defined using £. We have also presented
an implementation of a platform to enact e-institutions rep-
resented in our formalism. Our proposal has been exploited
for rapid prototyping of large Multi-Agent Systems [21].

The logic £, a restricted form of first-order logic, has been
engineered for our purposes of labelling connections of a
finite-state machine. The set quantifications are just a no-
tational variant of first-order quantification. It is easy to see
that, for any arbitrary formula «, if VX € Set. a holds then
VX.X € Set A « also holds. The same is true for the other
quantifiers 3 and 3 !. The set constraints are just first-order
predicates whose intended meaning has been “hardwired”
to the underlying semantics.

There are connections between £ and many-sorted logics
[5]. The sets employed in our quantifications can be viewed
as explicit sorts. However, the set constraints do not have
a counterpart in many-sorted logics since sets are not part
of the allowed syntax. Set-based logics are not more pow-
erful than standard first-order logic [5]. However, we have
decided to employ a set-based logic to provide for a more
disciplined design with a cleaner representation. Clearly, all
the sets of an £ formula can be put together as one single
set (i.e. the union of all sets) but if we needed to differenti-
ate among elements (say, agents that are of different roles)
then we should provide extra means. Another advantage
of set-based logics stems from the potential reduction on
the search space for a model: if our universe of discourse
is organised in sets, our search procedure can concentrate
only on the sets concerned with the formulae, thus avoiding
having to unnecessarily examine large numbers of spurious
elements.

Our platform is a proof-of-concept prototype, engineered
with two principles in mind: a minimum number of mes-
sages should be exchanged and a maximum distribution and
asynchrony among processes should be achieved. Its dis-
tributed implementation allows its scale-up: more machines

can be used to host its agents. Starting from an e-institution
description in our formalism, represented as a sequence of
Prolog constructs, the platform starts up a number of ad-
ministrative agents to overlook the scenes and transitions.
The same e-institution formulation is employed to synthesise
the agents that will perform in the e-institution, following
our approach described in [20]. The specification of the e-
institution is used to guide the synthesis of the performing
agents and also to control the execution of the administra-
tive agents.

The e-institutions are represented as Prolog terms, in a
declarative fashion. We have noticed that this represen-
tation is amenable for many different sorts of manipula-
tion. We have used it, for instance, to synthesise agents
— these are guaranteed to conform to the e-institution they
were synthesised from — and also to guide the execution of
general-purpose administrative agents. However, the declar-
ative representation also allows for desirable properties to
be checked before we run the e-institution. For instance,
the well-formedness of our e-institutions, that is, whether
all scenes, transitions, roles, states, and so on, are properly
defined, and whether scenes only connect to existing transi-
tions and vice-versa. More interesting properties are those
concerning the accessibility of scenes, transitions and states,
the existence of “sinks”, and the property that the quanti-
fiers of formulae only refer to sets assembled in preceding
formulae. We are currently investigating this issue.

Our implementation does not take into account message
loss or delays. We also assume that there are no malig-
nant agents intercepting messages and impersonating other
agents. Our platform can be seen as an idealised correct
version of a multi-agent system to be built, whereby the per-
forming agents stands for “proxies” of foreign heterogeneous
agents, guaranteed to follow an e-institution. The practical
security issues that actual heterogeneous agents are prone
to are not transferred on to the e-institution platform. We
are working on how agents synthesised from the e-institution
specification [20] could be presented to foreign agents and
customised as their proxy agents.

Another thread of work concerns building prototypes for
MASs and studying their dynamics. We are currently in-
vestigating models for the referral of breast cancer patients
and how different protocols among the parts involved (gen-
eral practitioners, patients, specialists, etc.) may improve
the throughput of patients with an early detection of cases.

Acknowledgements: This work was partially sponsored
by the European Union, contract IST-1999-10208, research
grant Sustainable Lifecycles in Information Ecosys-
tems (SLIE).

6. REFERENCES

[1] K. R. Apt. From Logic Programming to Prolog.
Prentice-Hall, U.K., 1997.

[2] Budde, R. and Kuhlenkamp, K. and Mathiassen, L. and
Ziillighoven, H., editor. Approaches to Prototyping.
Springer-Verlag, New York, NY, USA, 1984.

[3] N. Carriero and D. Gelernter. Linda in Context. Comm. of
the ACM, 32(4):444-458, Apr. 1989.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. MIT Press, USA, 1990.

[5] H. B. Enderton. A Mathematical Introduction to Logic.
Harcourt/Academic Press, Mass., USA, 2nd edition, 2001.

[6] M. Esteva, J. Padget, and C. Sierra. Formalizing a
Language for Institutions and Norms. In M. Tambe and

7]

(12]

(13]

14]

(15]

[16]

(17]

(18]

19]

20]

(21]

(22]

J.-J. Meyer, editors, Intelligent Agents VIII, volume 2333
of LNAI Berlin, 2001. Springer-Verlag.

M. Esteva, J.-A. Rodriguez-Aguilar, C. Sierra, P. Garcia,
and J. L. Arcos. On the Formal Specification of Electronic
Institutions. In F. Dignum and C. Sierra, editors, Agent
Mediated E-Commerce, volume 1991 of LNAL
Springer-Verlag, 2001.

FIPA. The Foundation for Physical Agents.
http://www.fipa.org, 2002.

V. S. Gordon and J. M. Bieman. Rapid Prototyping:
Lessons Learned. IEEE Software, 12(1):85-95, 1995.

P. R. Halmos. Naive Set Theory. Van Nostrand, Princeton,
New Jersey, 1960.

W. Hasselbring. Programming Languages and Systems for
Prototyping Concurrent Applications. ACM Computing
Surveys, 32(1):43-79, 2000.

J. Hulstijn. Dialogue Models for Inquiry and Transaction.
PhD thesis, University of Twente, 2000.

Y. Labrou, T. Finin, and Y. Peng. Agent Communication
Languages: the Current Landscape. IEEE Intelligent
Systems, 14(2):45-52, 1999.

Z. Manna. Mathematical Theory of Computation.
McGraw-Hill Kogakusha, Ltd., Tokio, Japan, 1974.

J. A. Rodriguez Aguilar, F. J. Martin, P. Noriega,

P. Garcia, and C. Sierra. Towards a Formal Specification of
Complex Social Structures in Multi-Agent Systems, pages
284-300. Number 1624 in LNAI. Springer-Verlag, Berlin,
1997.

P. McBurney, R. van Eijk, S. Parsons, and L. Amgoud. A
Dialogue-Game Protocol for Agent Purchase Negotiations.
Journal of Autonomous Agents and Multi-Agent Systems,
2002. In Press.

Michael Wooldridge. An Introduction to Multiagent
Systems. John Wiley & Sons, Chichester, UK, Feb. 2002.
ISBN 0 47149691X.

SICS. SICStus Prolog User’s Manual. Swedish Institute of
Computer Science, available at
http://www.sics.se/isl/sicstus2.html#Manuals, Feb.
2000.

W. W. Vasconcelos, D. Robertson, J. Agusti, C. Sierra,
M. Wooldridge, S. Parsons, C. Walton, and J. Sabater. A
Lifecycle for Models of Large Multi-Agent Systems. In
Proc. 2nd Int’l Workshop on Agent-Oriented Soft. Eng.
(AOSE-2001), volume 2222 of LNCS. Springer-Verlag,
2002.

W. W. Vasconcelos, J. Sabater, C. Sierra, and J. Querol.
Skeleton-based Agent Development for Electronic
Institutions. In Proc. 1st Int’l Joint Conf. on Autonomous
Agents € Multi-Agent Systems (AAMAS 2002), Bologna,
Italy, 2002. ACM, U.S.A.

W. W. Vasconcelos, C. Sierra, and M. Esteva. An
Approach to Rapid Prototyping of Large Multi-Agent
Systems. In Proc. 17th IEEE Int’l Conf. on Automated
Software Engineering (ASE 2002), Edinburgh, UK, 2002.
IEEE Computer Society, U.S.A.

T. Wagner, B. Benyo, V. Lesser, and P. Xuan. Investigating
Interactions between Agent Conversations and Agent
Control Components. In F. Dignum and M. Greaves,
editors, Issues in Agent Communication, pages 314—330.
Springer-Verlag: Heidelberg, Germany, 2000.

