
OpenKnowledge

FP6-027253

D6.8: Summative report on the use of

OpenKnoledge framework in e-Response:

integration and evaluation results

Gaia Trecarichi1, Veronica Rizzi1, Lorenzino Vaccari1, Maurizio Marchese1

1 University of Trento
{gtrecari;vrizzi;vaccari;marchese}@disi.unitn.it

Report Version: final
Report Preparation Date: 31/12/08
Classification: deliverable 6.8
Contract Start Date: 1.1.2006 Duration: 36 months
Project Co-ordinator: University of Edinburgh (David Robertson)

Partners: IIIA(CSIC) Barcelona
Vrije Universiteit Amsterdam
University of Edinburgh
KMI, Open University
University of Southampton
University of Trento

1

Abstract

This deliverable aims at investigating the capability of the Open-
Knowledge framework to support centralised as well as decentralised
architectures for information gathering in emergency response man-
agement. For this purpose, we developed an agent-based e-Response
simulation environment fully integrated with the OpenKnowledge in-
frastructure and through which existing emergency plans are modelled
and simulated. Preliminary results show (1) the overall scalability of
the OpenKnowledge kernel to realistic use cases; (2) the capability of
the OpenKnowledge framework in supporting the two afore-mentioned
architectures and, under ideal assumptions, a comparable performance
in both cases.

1 Introduction

All phases of emergency response management - that in the following we will
reference as emergency response (e-Response) activities - depend on data
from a variety of sources. Moreover, during an emergency it is critical to
have the right data, at the right time, displayed logically and contextually,
to respond and take the appropriate actions. At present, most of the informa-
tion management infrastructures required for dealing with emergencies are
based on centralised architectures that (i) are specifically designed prior to
the emergency, (ii) gather centrally the available information, (iii) distribute
it upon request to the appropriate agents (e.g., emergency personnel, doctors,
citizens). While centralised infrastructures provide a number of significant
advantages (in terms of quality control, reliability, trustworthiness, sustain-
ability, etc.), they also present some well-known intrinsic problems (e.g.,
physical and conceptual bottlenecks, communication channel overloads, sin-
gle point of failure). All these issues are taken into account in the design and
deployment of current mission-critical centralised systems. However, infor-
mation sharing breakdowns are still possible and have occurred also in recent
emergency events, such as the catastrophic passage of Hurricane Katrina in
New Orleans in 20051. Alternative data management (both for gathering and
providing information) infrastructures are currently being explored, studied
and analyzed ([1], [2], [3]) in order to support data sharing also in the ab-
sence of a centralised infrastructure. In this study, we explore the flexibility
and adaptability of the OpenKnowledge framework in the context of an e-
Response scenario. This framework provides a distributed infrastructure,
that enable peers to find and coordinate with each other by publishing, dis-
covering and executing interaction models, i.e. multi party conversational
protocols written in the Lightweight Coordination Calculus (LCC)[4]; the
key novelty of the approach is that no a-priori agreement or knowledge of
the conversation partners is needed to have meaningful interactions. In this

1http://en.wikipedia.org/wiki/Effect of Hurricane Katrina on New Orleans

2

work, the proposed OpenKnowledge (OK) infrastructure is used to explore
its capability to support both centralised and decentralised architectures for
information gathering in open environments. For this purpose, we built a
simulation-based test-bed fully integrated with the OK platform. The fi-
nal goal of such virtual environment is to evaluate this framework in the e-
Response domain. In particular, we implemented an e-Response simulation
environment through which existing emergency plans based on real-data are
modelled and simulated. Moreover, a suite of experiments has been designed
and run to evaluate the performance of the OK e-Response system under
specific assumptions. Preliminary results show the system’s capability of
supporting the two afore-mentioned architectures and a comparable perfor-
mance in both cases. To summarize, the main contributions of the present
deliverable are:

• The full use and testing of the current release of the OpenKnowledge
infrastructure in a realistic and demanding use case;

• The provision of an agent-based simulation environment in which to
evaluate interaction models, coordination tasks and diverse emergency
information-gathering models;

• A preliminary analysis and comparison between the effectiveness of the
OpenKnowledge infrastructure in centralised (hierarchical) and decen-
tralised (p2p) information gathering in e-Response management activ-
ities.

The idea to explore and test the effectiveness of different data manage-
ment architectures in ”real-world” e-Response setting is not new. It is recog-
nized [5] that realistic computer simulations can be a valuable tool to investi-
gate innovative solutions, such as new collaborative information systems, new
cooperation configurations and communication devices. In fact, several multi
agent-based simulation applications have been developed in diverse domains
([6], [5], [7], [8], [9]). Related research projects are either specifically devised
for the emergency management area or focused more on the architectural
aspect. In particular, CASCOM2, WORKPAD3, EGERIS4, EUROPCOM5,
POMPEI6, POPEYE7 and WIN8 are among such projects. For example,
in the CASCOM project (Context-Aware Business Application Service Co-
ordination in Mobile Computing Environments) an intelligent agent-based
peer-to-peer (Ip2p) environment was developed [10]. Also, in the FireGrid
project [11], a software architecture to help fire-fighters in e-Response events

2http://www.ist-cascom.org
3http://www.workpad-project.eu/description.htm
4http://www.egeris.org
5http://www.ist-europcom.org
6http://www.pompei-eu.com
7http://www.ist-popeye.org
8http://www.win-eu.org

3

has been built. They realized an integrated system where real-time sensor
data are processed using sophisticated models, running on High Performance
Computing (HPC) resources accessed via a Grid interface, and finally pre-
sented to humans using a command-and-control multi-agent system. In this
case, a mechanism based on the OpenKnowledge approach would allow each
agent to execute, and eventually modify, the workflow, thanks to the sharing
of the multi-agent protocol.

In what follows, we first introduce the e-Response test-bed (Section 2).
We then present, in Section 3, the e-Response case study used to experiment
the OK framework. Next, in Section 4, we describe the e-Response simula-
tion environment architecture and, in Section 5, we present the experimental
summative experiment designed for the evaluation; preliminary results of
centralised vs. decentralised information management architectures are also
discussed. In Section 6, we draw our conclusion and future work. Section 7
contains akcnowledgments. Finally, in Appendixes A-1 and A-2, we provide
a technical documentation of all the interaction models developed for the
various experiments.

2 The e-Response Test-bed

The developed e-Response test-bed consists of an agent-based e-Response
simulation environment fully integrated with the OpenKnowledge infrastruc-
ture and through which existing emergency plans are modelled and simulated.
In particular, with such test-bed we:

• Simulate significant e-Response use-cases using the OK infrastructure;

• Investigate how the OK framework is capable of supporting emergency
activities coordination (centralised vs. decentralised information gath-
ering);

• Test the robustness of the OK kernel by exploring two dimensions: (1)
the number of peers involved in a simulated coordination task and (2)
the number of interaction models;

The e-Response test-bed is composed of the following main components
which will be described through the rest of the deliverable:

1. A Simulator capable of modelling a flood event in Trentino, using real
GIS/flood data (see section 4.2);

2. Suite of LCC interaction models (ca.13) supporting three different peer
coordination strategies: baseline, centralised and decentralised coordi-
nation. These strategies will be discussed in section 3.2.2; full details
on the interaction models are given in appendixes A-1 and A-2;

4

3. Suite of OpenKnowledge components (ca. 25) enabling emergency peer
types. Such peer types are described in section 3;

4. Suite of Peers (ca. 300) modelling emergency agents;

5. Suite of experiments aimed at testing the OK kernel (more details in
section 5);

6. ICT Infrastructure to support the experiments (DBs,servers,script); de-
tails on part of the infrastructure can be found in section 5.3.

3 The e-Response Case Study

In this section, we describe the case study where the OpenKnowledge frame-
work has been applied: an emergency response scenario. The nature of the
specific e-Response domain is such that a structured coordination is neces-
sary in order to prevent chaotic and uncontrolled conditions. Nevertheless,
taking into account flexibility is fundamental to handle unexpected situa-
tions (e.g., sudden road blockage, fast and unpredicted events, etc) which
will most likely happen in emergency situations. While the general vision of
interaction protocols accounts for the structured coordination requirement of
the problem, the adoption of models specifically designed to explicit interac-
tions in a p2p fashion and passed through an underling open infrastructure
accounts for the support of flexibility and dynamicity.

We applied the OpenKnowledge framework in the case study of a flooding
disaster in Trento (Italy). The work moved its steps from a preliminary anal-
ysis on this kind of disaster. The available analysis resulted from documents
related to the current flood emergency plan in the Trentino region and from
interviews with experts. We individuated emergency peers (e.g., firemen,
police, medical, bus/ambulance agents, etc.), the main organization involved
(e.g., Emergency Coordination Center, Fire Agency, Civil Protection Unit,
Provincial Health Agency, etc.), a hierarchy between the actors (e.g., emer-
gency chief, subordinate peers, etc.), service peers (e.g., water level sensors,
route services, weather forecast services, GIS services, etc.) and a number of
possible scenarios, that is, possible interactions among the agents and their
assigned tasks. The peers can be distinguished into two main categories:
service peers and emergency peers. While the former are basically peers pro-
viding services under request, the latter are peers often acting on behalf of
emergency human agents that are in charge of realizing the emergency plan.
A comprehensive description of all peers and tasks can be found in previous
OpenKnowledge deliverables ([12],[13]). Figure 1 recalls the richness of all
scenarios and interactions possibly involved. The areas circled in red, con-
cern the scenarios actually modeled in terms of LCC interactions. In what
follows, we illustrate only such scenarios. The upper part of the figure repre-
sents the pre-alarm phase of the emergency plan foreseen by the Autonomous
Province of Trento. The down part relates to the evacuation phase.

5

Figure 1: The overall e-Response use case

In the prealarm phase are mainly involved service peers which are, as has
been previously said, peers providing all that information needed to enact
the emergency plan or not. The pre-alarm phase thus involves mainly service
peers which provide information useful for decision making. The pre-alarm
phase eventually results in the evacuation phase. Such phase regards all the
activities needed to move people to safe places. In such phase, the key peers
are emergency peers, that is, all the peers in charge of helping in the evacua-
tion of citizen: emergency coordinators, firemen, government agencies (e.g.,
civilian protection department), real-time water level data reporters (e.g.,
people, sensors). Of course, the emergency peers are supported by service
peers such as route services, sensors scattered across the emergency area, etc.

Figure 2 gives a schematic view of the two phases involved in our case
study. It shows the involved actors (denoted by round circles), their in-
teractions and the kind of information exchanged. The smooth rectangle
denotes the simulator, that is, the virtual environment where all the peers
act; obviously, it doesn’t correspond to any entity in the reality, therefore, we
don’t describe it in this context. However, the simulator is essential for the
simulation-based test-bed and will be illustrated in detail in the next section
4.

The figure also shows two different evacuation sub-scenarios: in both of
them, a peer needs to get information on route’s practicability but while
in one case (area above the red line) such moving peer (MP) gets route
information by asking the Civil Protection (CP), in the other one (area below
the red line) it interacts directly with reporters (r1,r2,r5) physically present
at the locations of interest. These two ways of gathering information are

6

referred to as centralised and decentralised strategies.

Figure 2: The implemented e-Response scenarios

3.1 Prealarm scenario

In the pre-alarm phase, the water level of critical points along the river
is constantly monitored by an emergency monitoring system (EMS). Such
system also checks weather information in order to enrich the data needed
to predict the evolution of a potential flooding. When a critical situation
is registered, the emergency chief is notified in order to be able to take the
proper actions.

3.1.1 Peer types

The peer types involved in the pre-alarm scenario are the following:

• Emergency Monitoring System (EMS): such system represents the server
station where all the information which are critical to the emergency
are collected. In particular, the system:

– collects weather forecast information;

– collects water level information from sensors located along the
Adige river;

– analyses the previous information;

– when needed, sends a proper alarm message to the emergency
chief;

• Water Level Sensor(S): represents a water level sensor placed in one
of the four strategic points along the Adige River; provides water level
information registered at the location where it is placed;

7

• Weather Forecast Provider (WFP): provides weather conditions (i.e.,
temperature, rain probability, wind strength) given a specific location.

• Emergency Chief (EC): the top-level autority which is notified by the
EMS and is in charge of making decisions.

As can be noticed, the majority of the above peers are mainly what we
denoted as “service” peers.

3.1.2 Prealarm interactions

The main interactions pertaining the prealarm phase - and which are modeled
in terms of LCC interaction models - are essentially three. A short description
for each of them follows:

1. Water level sensors monitoring : a central monitoring system (EMS)
requests continuously the level of water registered at critical positions
along the river. Such information, together with the one about the
precipitation rate in the next days, is crucial to enact the evacuation
plan;

2. Weather information collection: the emergency chief requests periodi-
cally a weather forecast (i.e., rain and temperature) in order to make
previsions and therefore decisions on the actions to take.

3. Alarm message generation: when certain water thresholds and weather
conditions are detected, an alarm is sent to the emergency chief.

Appendix A-1 contains a more detailed description and the LCC code
relative to the above interactions.

3.2 Evacuation scenario

As anticipated before, the evacuation plan consists of peers (e.g., firemen,
buses, citizen) moving to safe locations. In order to move, such peers need to
perform some activities, i.e., choosing a path to follow (usually by asking a
route service), checking if the path is practicable (usually by interacting with
the Civilian Protection or with available reporters distributed in the area),
proceeding along the path. The Civilian Protection can deliver information
on the blockage state of some given path to a requester. It is able to do that
since it is continuously gathering information from reporters scattered around
the emergency area. Such reporters inform on the water level registered at
their locations.

8

3.2.1 Peer types

The peer types involved in this scenarios are the following:

• Emergency Chief (EC): such peer is responsible for the coordination of
all the emergency activities, from the propagation of the alarm to its
subordinates, to resources allocation. Specifically, it:

– receives different levels of emergency alarm messages from the
EMS;

– collects GIS information;

– collects specific weather information (e.g., temperature, rain prob-
ability, wind strength, etc.)

– sends directives to its subordinates (e.g., move to a specific point,
close a meeting point)

• Moving Peer (MP): it is a peer (e.g., an emergency subordinate as a
fireman, a bus, a citizen) that needs to move to a specific location;

• Route Service (RS): provides a route connecting two given locations; it
can also provide a route that does not pass by a given set of undesired
locations;

• Civil Protection (CP): it is responsible for giving information on the
blockage state of a given path;

• Reporter (R): it is responsible for giving information on the water level
registered at its location. It could be either a citizen or a sensor device
permanently placed at a given location. In our simulations, we consider
reporters as fixed sensor devices.

3.2.2 Information gathering strategies

An important part of the evacuation scenario consists of checking whether
a given route is practicable or not. However, in our simulation, we foresee
also the case in which the peer chooses to directly move along the route
without getting any information on its blockage conditions. This scenario,
in which no strategy is adopted in order to gather useful information, con-
stitutes the baseline scenario: a route is taken without checking a priori its
conditions. The difference between this baseline scenario and the one de-
veloped in Deliverable 6.7 lies in the complete integration of the e-Response
simulation environment with the OK kernel: all peers are now equipped with
OKCs components and execute LCC interactions by exploiting the search-
and-discover, the matching and the trust functionalities provided by the OK
kernel.

9

Aside from focusing on porting the OK kernel into the simulation environ-
ment, the main effort of this year activity has been to design and implement
experiments testing the capability of the OpenKnowledge platform to sup-
port two different information gathering strategies. These strategies relate
to how a moving peer gather information on the route practicability, more
specifically:

• Centralised strategy : a moving peer obtains information on the
blockage conditions of a given route after consultation with the Civil
Protection CP (see Figure 2 - area above the red line);

• Decentralised strategy : a moving peer obtains information on the
blockage conditions of a given route by gathering water level informa-
tion from a selected group of reporters (see Figure 2 - area below the
red line).

More details on how the moving peer reasons about the information thus
gathered is given in section 4.1, where the peer-network component of the
e-Response simulation system is described.

What we want to underline here is that the adoption of an information-
gathering strategy (either centralized or decentralized) supports the peer in
performing its task. Figure 3 shows the behaviour adopted by the moving
peer while moving along a path. Every time it reaches a location, the peer
gets information on the blockage state of the route ahead. Notice that, when
the path is blocked because of an excessive level of water in a location, the
moving peer is aware of that in advance and is thus able to find an alternative
path before approaching the blocked location.

Figure 3: Evacuation phase: moving peer behaviour

3.2.3 Evacuation interactions

The main actions involved in the evacuation phase are shortly described
below:

10

1. Start evacuation: describes how an evacuation plan evolves. An emer-
gency coordinator alerts members to go to a specific destination. Each
member finds a path to reach the destination, checks its status and
eventually moves along the path;

2. Find a route: describes the interaction needed to retrieve a path from
a route service;

3. Check path status with CP : describes the interactions with the Civilian
Protection needed to know the blockage state of a path;

4. Gather real-time data from reporters : a peer asks information about
the water level to a group of reporters.

The above actions correspond respectively to the “Evacuation”, “Find-
Route”, “Check-Route-State” and “Querier-Reporter” LCC interaction mod-
els. More information on the LCC-specifications used to describe the above
scenarios and a full explanation of the LCC code can be found respectively
in section 4.1 and Appendix A-2.

4 The e-Response System Architecture

To fully use and test the current release of the OpenKnowledge infrastructure
in the realistic use case previously described, we built an e-Response simu-
lation environment. The current simulation environment is based on the
system presented in [14] and extends it both in a complete integration with
the OpenKnowledge kernel and in the inclusion of a realistic flood-simulator.
In particular, the following features can be found in this current version of
our e-Response simulation system:

1. Full integration with the OK kernel: the previous prolog simulation was
ported and further extended into Java so to make full use of the Open-
Knowledge components: the LCC Interpreter, the Discovery Service,
the Trust, Matching and GEA modules;

2. Dynamic evolution of flood: while in the previous simulation the block-
age state of a node was fixed a priori, a realistic flood simulation is
embedded in the current system;

3. Modular/simple IMs: in the current simulation environment, about ten
single and independent interaction models are used, instead of a unique
and relatively complex one (as in the previous simulation);

4. Increased peer’s types: the current simulation system extends the previ-
ous one in the number of peer types involved in the emergency scenario.
New peer types such as Reporters, Civil Protection Unit, Weather Ser-
vices, Emergency Monitoring Systems are considered;

11

5. Different information gathering strategies: the current simulation sys-
tem extends the previous one in the scenarios involved; while, previ-
ously, the moving peer was meant to go directly to the destination
assigned, in the current simulation the peer can adopt two different
information-gathering strategies to ask for the route conditions.

The test-bed is used to evaluate interaction models, coordination tasks
and the diverse emergency information-gathering models; through simula-
tions, it is possible to estimate how the platform could perform in realistic
emergency scenarios. The developed e-Response simulation system is used
to: (1) model the behaviour of each peer involved in an e-response activity,
(2) execute predefined interaction models within a p2p infrastructure and
(3) visualize and analyze a simulated coordination task through a Graphical
User Interface (GUI). The e-Response system is composed of two main com-
ponents: the peer network and the e-Response simulator. Figure 4 sketches
its overall architecture. All peers are equipped with their own OpenKnowl-
edge plug-in component(s); each black arrow represents a different interac-
tion model, which also represents the flow of information between peers; the
greys arrows indicate interactions among network peers only. In the next
three subsections, we illustrate the peer network, the e-Response simulator
and the reuse of OK-components respectively.

Figure 4: The e-Response system’s architecture

4.1 The peer network

The peer network represents the group of agents involved in a simulated coor-
dination task. An agent in the peer network can interact with other agents,
perform some actions (e.g., moving along a road) and gather information.
(e.g., sense the water level in its vicinity).

12

In order to perform an action or receive sensory information near its
location, a peer must connect to the simulator by enacting the “Connect”
interaction model. Once added to the simulation, the connected peer period-
ically receives sensory information from the simulator via the “Sensory-Info”
interaction model; finally, to perform an action, a connected peer enacts the
“Perform-Action” interaction model which models the action coordination
with the simulator. The connected network peers are called physical peers
(shaded ellipses in Figure 4).

Not all peers must connect to the simulator: non-physical peers, such as a
route service that provides existing routes, do not need to communicate with
the controller but only with other peers in the peer network. In the real world
such peers would not actually be in the disaster area and could not affect
it directly, but could provide services to peers that are there. Non-physical
peers are represented as not shaded ellipses in Figure 4.

In what follows, we describe in more details those interactions between
the network peers which regard the evacuation phase, that is, the phase which
was simulated in order to test the OK infrastructure and compare the men-
tioned information gathering strategies. Figure 5 shows the architecture of
the system where the main interactions between network peers are specified.

Figure 5: Evacuation phase: network peer’s interactions

The whole coordination task evolves through the following ordered se-
quence of steps:

1. Send directive: the emergency chief EC sends the directive to move to
a given destination to a moving peer MP ;

2. Ask route: the MP asks a path to the route service RS ;

3. Return route: the MP receives a path from RS ;

13

4. Check route state: the MP checks the route state with either the Civil
Protection CP (centralised scenario) or the reporters r (decentralised
scenario);

5. Perform action: the MP checks the feasibility of the (move) action;

6. Return action feasibility : the MP comes to know whether the action
has been performed or stopped.

Eventually, steps 2 through 6 are repeated until the final destination is
reached. The above sequence of actions is coded in terms of the “Evacuation”
interaction model9 which represents the “main” one in that it captures the
whole evacuation scenario. In Figure 5, grey arrows refer to activities entirely
performed within the “Evacuation” IM while the black arrows shaded in grey
indicate that the associated steps are executed by solving LCC constraints
(in the main IM) which, in their core part, enact separate LCC interaction
models. This is a key functionality of the OK platform, since it allows to
write simple, modular and reusable LCC specifications. We tell something
more on this later in this section.

Here, the “Evacuation” IM is described in its main parts, however, a
detailed description can be found in appendix A-2.2.1. It simulates the evac-
uation phase and can be used in all those situations where an emergency chief
sends the directive of reaching specific locations to its subordinates. In short,
an emergency subordinate ES10 receives an alert message from the chief and
resolves some constraints in order to set the goal to be achieved (reach the
goal destination G) and get the current position. The activities of ES thus
evolve through three key LCC roles: the goal achiever role which abstractly
models the activity of searching for a path and moving towards the goal; the
free path finder role which defines the operations needed to find a free path;
the goal mover role which models the actions needed to move towards the
goal destination. Figures 6-7 show LCC code snippets for two of the key roles.
The constraints specified in bold are the ones enacting separate interaction
models. For example, the steps 2-3 mentioned above are performed in the
constraint find path(From,To,Path) of Figure 7. Such constraint enacts the
“Find-Route” IM whose details can be found in appendix A-2.2.2. Step 4 is
performed within the constraint request path state(Path,PathState) shown in
the same figure. Such constraint eventually enacts either the “Check-Route-
State” or the “Querier-Reporter” IM, this depending on the information
gathering strategy adopted. Finally, steps 5-6 are performed in the constraint
try move action of the goal mover role11; it enacts the “Perform-Action” IM
(see appendix A-2.1.7 for more details).

In what follows, we describe in details the activity of checking the path
state, since it represents the core part of our simulation. The constraint

9In what follows, we will give to “interaction model” the short name “IM”.
10Here the emergency subordinate ES is what we denoted as moving peer.
11This role is fully explained in appendix A-2.2.1.

14

Figure 6: LCC fragment for the “goal-achiever” role

Figure 7: LCC fragment for the “free-path-finder” role

request path state(Path,PathState) of Figure 7 performs two activities: (a)
enaction of a separate LCC interaction model in order to get key informa-
tion on the route state; (b) deduction of the route practicability from the
information acquired. Activity (a) is carried out in the case where one in-
formation gathering strategy is adopted: the “Check-Route-State” and the
“Querier-Reporter” IMs will be respectively enacted in centralised and decen-
tralised scenarios. When the moving peer moves ahead without first checking
the route state (no information gathering strategies are adopted), the activ-
ity (a) won’t be performed and the route will be assumed to be practicable.
Activity (b) will start after completion of the interaction eventually enacted

15

in activity (a) and will usually need the information acquired by the moving
peer during such interaction. The problem of accessing persistent information
acquired during execution of separate interactions is addressed by the OK
kernel through a “peer access mechanism” which allows an OpenKnowledge
Component12 (OKC) to access the local knowledge of the peer by invoking
methods declared in a specific “PeerAccess” Java class13.

Figure 8 shows the Java code of the OKC’s method associated to the
request path state constraint that implements the activity (a) mentioned be-
fore. It can be noticed how, depending on the current strategy, the peer
either enacts one of two interaction models or sets the route state as “free”.
The enaction of a separate interaction model exploits the “peer access mech-
anism” and specifically takes place by invoking either the executeIM method
or the executeIMWithStrategy method. The latter method differs from the
former in that it performs a preliminary filtering of the peers subscribed to
the IM to be executed. In the specific, before execution of the “Querier-
Reporter” IM, the peer selects a group of reporter peers. More details on
this selection mechanism are given later in this section.

Figure 8: Java code for OKC method “request path state”: interaction model
enaction

In what follows, we give some details on both the centralised control be-
haviour and the decentralised control behaviour.

12More details on OpenKnowledge components can be found in [15].
13More details on how to access the peer state can be found in:

http://www.few.vu.nl/OK/wiki/doku.php?id=manuals:peer access.

16

Centralised Control Behaviour

The centralised scenario is characterized by the presence of the Civil Pro-
tection peer who acts as the unique provider of route state information and
relies on reporters, i.e., the main sources of such information. The behaviour
of the main actors is the following:

• The Civil Protection is subscribed to the querier role in the “Querier-
Reporter” IM and to the path info provider role of the “Check Route State”
IM. It maintains a database of current statuses of locations and answers
requests from moving peers for status information;

• Each Moving Peer is subscribed to a emergency-subordinate role in
the “evacuation” interaction (see A-2.2.1) and to the path info requester
role of the “Check Route State” IM. Initially at a given location L, this
peer performs the following steps in order to reach the goal destination
G :

1. If L = G then stop

2. Otherwise:

(a) Get one path P from L to G (P=[Phead | Ptail])

(b) Check that P is free by interacting with Civil Protection

i. If the path is free then

A. move from Phead to next location Ln

B. Back to step (b) with P=Ptail

ii. Otherwise back to step (a) to get an alternative path from
L to G

• Each Reporter is subscribed to a reporter role in the “Querier-Reporter”
IM. It responds to requests for water level information from a querier
(e.g., Civil Protection).

Figure 9 schematizes the main interactions between the peers. Full de-
tails on “Check Route State” and “Querier-Reporter” interaction models are
given in appendixes A-2.2.3 and A-2.2.4 respectively.

Decentralised Control Behaviour

The decentralised scenario is characterized by the direct interaction be-
tween a moving peer and a suitably selected group of reporters. The be-
haviour of such peer is as below:

• Each Moving Peer is subscribed to an emergency-subordinate role
in the “evacuation” interaction (see A-2.2.1) and to the querier role
of the “Querier-Reporter” IM. Initially at a given location L, this peer
performs the following steps in order to reach the goal destination G :

17

Figure 9: Information Gathering: centralised interactions

1. If L = G then stop

2. Otherwise:

(a) Get one path P from L to G (P=[Phead | Ptail])

(b) Subscribe to the role of querier with subscription description
querier(Ptail)

(c) Choose reporters according to path P

(d) Check that P is free by interacting with the selected reporters

i. If the path is free then

– Move from Phead to next location Ln

– Back to step (d) with P=Ptail

ii. Otherwise back to step (a) to get an alternative path from
L to G

• Each Reporter at location N subscribes to the reporter role in the
“Querier-Reporter” IM with a subscription description of “reporter(N)”.
It responds to a request for status information from a querier (e.g.,
moving peer).

In the above, the key point is how the moving peer selects a suitable group
of reporter peers. Suppose the peer has to move from location L to location G
through path P = [L,A,B,G]. Here, A and B represent intermediate locations
(or nodes). Assume reporters R1, R2, R3, R4 and R5 are at nodes A,
L, F, B and G respectively and they are subscribed to the reporter role
as specified above. Figure 10 shows the selection process as a sequence of
steps. In step 1, the moving peer MP subscribes to the querier role with
subscription description querier(A,B,G). This means that it is interested in

18

interacting with only those reporters which are present at the location A,B,G
specified. In step 2, MP receives a list R of all reporters subscriptions from
the OK Discovery Service [16]. In this example, such list would be R =
[R1 (A),R2 (L),R3 (F),R4 (B),R5 (G)]. In step 3, MP selects the reporters of
interest, that is, R1, R4 and R5. In step 4, the MP starts interacting via the
“Querier-Reporter” IM with the selected reporters (green-bordered circles
with blue fill).

Figure 10: Decentralised Information Gathering: selection of reporters

4.2 The e-Response simulator

The simulator is designed to represent the environment where all the involved
agents act. It is composed of three modules which are themselves peers: the
controller, the flood sub-simulator, and the visualiser (see Figure 3). The
controller regulates the simulation cycles and the management of the simu-
lated agent activities; the flood sub-simulator - at present - reproduces the
actual evolution of the 1966 flood in Trento; the visualiser stores simulation
information used by the GUI to view a simulation run in a step-by-step way.
The simulator does not interfere or help coordinate peer’s actions in the peer
network. It is used to simulate the real world.

4.2.1 Controller

The controller is the core of the simulator: it drives the simulation cycles
and keeps track of the current state of the world. In order to achieve that,
it needs to know what changes are happening to the world and updates its
state accordingly. After updating its state, it also informs the relevant peers
of these changes. The simulation thus evolves through cycles (or time-steps).
A simulation cycle foresees two main operations:

• Gathering changes: the controller receives information about the
changes that happened to the world: (a) it receives the disaster (e.g.,

19

flood) changes from the disaster sub-simulator via the specific interac-
tion model and (b) it serves requests of performing (move) actions with
the “Perform-Action” interaction model (see Figure 4). In this latter
interaction, the controller verifies whether certain actions are legal or
not before they are performed, and if a certain action is illegal, the peer
is informed of the reason of failure;

• Informing peers : the controller sends information about the changes
that happened in the world: (a) it sends, at each time-step, local
changes to each connected peer via the “Sensory-Info” interaction model
and (b) it sends to the visualiser information on - (i) the locations of
all connected peers; (ii) the status of the reporter peers (e.g., available,
responding to requests) and (iii) the water level registered; here, the
“Visualiser” interaction model is used.

Before a simulation cycle commences, some preliminary activities are per-
formed such as: establishing key parameters (e.g., maximum number of sim-
ulation cycles, timeouts, water level thresholds), connecting with the flood
sub-simulator, sharing with it the initial topology of the world, and adding
connecting peers. Once a simulation cycle terminates, the controller updates
the time-step and starts the next cycle. Notice that, due to the modularity
of the above architecture, it is reasonably easy to add as many disaster sub-
simulators (e.g., landslides, earthquake, volcanic eruption, etc.) as needed.

To simulate the afore-mentioned activities, the single interaction model
“Simulation-Cycles” is designed14. An LCC code snippet is given in Figure
11. It only shows the key role of the controller. The constraints specified in
bold are solved by executing the “Flood”, “Sensory-Info” and “Visualiser”
interaction models15 respectively.

Figure 11: LCC fragment for the “info-handler” role taken by the controller

14See appendix A-2.1.1 for full details on this interaction model.
15The “Flood”, “Sensory-Info” and “Visualiser” IMs are fully explained in appendixes

A-2.1.4, A-2.1.5 and A-2.1.6 respectively

20

4.2.2 Flood Sub-Simulator

The flood sub-simulator goal is to simulate a flood in the town of Trento
(Italy). The equation defined in its core OKC is based on flooding levels
and flooding timings resulted from a flood simulation for the town of Trento,
developed by the International Institute for Geo-Information Science and
Earth Observation and by the University of Milano-Bicocca [17].

This study is based on a very detailed digital terrain model of the river
Adige valley, on historical hydrological data of the flood experienced in
Trentino in 1966 and on the localization of ruptures of the river’s dike. It also
takes in consideration floodplain topography changes from year 1966 to year
2000 caused by modifications in vegetation spaces, in agricultural regions, in
industrial zones, in urban areas and in infrastructures. A two-dimensional
finite element flood propagation model is used to reconstruct the 1966 flood
and to show how the terrain alterations affects the flood behaviour. This
2-D model, at regular time intervals, generates two maps for both the water
height and the flow velocity. Once such maps are created, they are then
transformed into five indicator maps, which are shown in Figures 12 through
16. These indicators are:

• Maximum water level : the maximum level (in meters) reached by the
flood;

• Maximum flow velocity : the maximum speed (in meters per second) of
the water flow;

• Maximum impulse: the maximum amount of water that has been
moved (maximum water level x maximum flow velocity);

• Maximum water level rising speed : the maximum increase of the water
depth (in meters per hour) ;

• Arrival time of the first water : the time when the flood arrives at a
given position.

To the purpose of our test-bed, the territory is divided into flooded areas:
each area is characterised by the maximum water height reached during the
inundation and the time when this level is touched. These flooded areas are
obtained by digitizing the indicator maps of Figures 12 and 16. To maintain
our simulation realistic but simple, we have assumed that each area reached
its maximum flooding level in one hour.

Figures 18 and 17 show a zoom on the north region of Trento. In partic-
ular, they depict the maps of the flooded areas and represent, respectively,
the maximum water level and the time when it is reached. Such maps are
used in our test-bed in order to create two different tables in a geographical
database.

Each table has a field, called node, representing x,y cordinates of digi-
talized points. Moreover, the first table has a field, called MaxWL (Maximum

21

Figure 12: Maximum
water level [17]

Figure 13: Maximum
flow velocity [17]

Figure 14: Maximum
impulse [17]

Figure 15: Maximum
speed of rising of the wa-
ter level [17]

Figure 16: Arrival time
of the first flood waters
[17]

Water Level), that is the maximum water height for a node. The second ta-
ble, instead, has a field, called MT(Maximum Time), that describes the time,
in hours, at which the flood reaches the maximum water level at a node.
This value is calculated digitalizing the map showing the time arrival of the
first water (see Figure 16) and making the assumption that the time required
to culminate the flood is always one hour. Finally, at OK-simulation16 time,
only the selected data of the topology of the region interested by the current
simulation are joined in a single table using an Open Geospatial Consortium
standard spatial SQL query.

Given the data stored in the two tables of the geographical database,
and assuming that the time required to culminate the flood is one hour, the
flooding law used during the OK-simulation to calculate the flood changes
for a given node at a time-step t is:

f(t) = 0 if t < (MT − 1) ∗ T

f(t + 1) = f(t) + (MaxWL)
T if (MT − 1) ∗ T <= t < MT ∗ T

f(t) = f(MT ∗ T) if t >= MT ∗ T

(1)

16We denote our test-bed simulation as the “OK-simulation”, in order to distinguish it
from the one in [17].

22

Figure 17: Maximum water level in the
north of Trento town

Figure 18: Time when maximum water
height is reached in the north of Trento
town

where T is the number of time-steps per hour.
In Figure 19, we can see that the flood level is 0 from the beginning of

the OK-simulation to one hour before MT, i.e., the time at which the flood
reaches the maximum level. Then, in an hour the flood increments from 0 to
MaxWL and finally it stays to MaxWL until the end of the OK-simulation.
The time at which the water level starts to decrement is not considered since
the number of hours the flood stays at its maximum level is sufficiently high
for the purpose of our simulation.

Figure 19: Flooding Law

The flood sub-simulator is developed in Java and is fully integrated into
the OpenKnowledge kernel. The main component is an OpenKnowledge
peer FloodPeer, that subscribes to two interaction models, the “Flood Sub-
Simulator Connection” IM and the “Flood” IM, and stores its core OKC
component FloodSubSimulatorOKC. These two interaction models are very
simple. The “Flood Sub-Simulator Connection” IM (see A-2.1.2) is enacted

23

just once at the beginning of the simulation by the connectWithSubSimula-
tors constraint in the “Simulation Cycles” IM (see section A-2.1.1). This
interaction model has two main goals:

• sharing the topology of the world between the controller and the flood
sub-simulator peers;

• storing, in the controller peer local knowledge, the connection state of
the sub-simulator peer.

The second interaction model (see A-2.1.4) is used by the controller at
each time-step, in order to get from the flood sub-simulator the changes
of the flood level of the nodes in the area interested by the simulation. The
core parts of this interaction model are the floodChanges(Time,Changes) con-
straint (in the ‘flood-simulator’ role) and the updateFloodChanges(Changes)
constraint (in the ‘controller’ role). The first constraint implements the flood-
ing law (1); the second one performs an update of the water level of only those
nodes which were interested by flood changes during the last time-step.

4.2.3 Visualiser

This component enables the GUI used to visualise the simulation. In partic-
ular, the GUI shows the information provided by the controller through the
“Visualiser” interaction model. At every time-step, the visualiser receives
the changes and updates its history according to the new information. The
update results in a change on the GUI. Figure 20 shows the appearance of
the GUI at the first time-step of the simulation.

Figure 20: Emergency GUI

A green dot represents a reporter peer available for giving information on
the water level registered; a grey dot represents a reporter agent giving this

24

information; the water level at a location is depicted as a blue circle, which
size depends on how high the water level is; the hat represents the emergency
subordinate.

For more detailed information on the interaction models used to imple-
ment the simulator, please refer to the appendix A-2.1.

4.3 Reuse of OpenKnowledge components

To build the e-Response simulation system described in the previous sec-
tion, we strongly benefit from the possibility of reusing OK components. In
particular, the components reused to implement both centralised and decen-
tralised scenarios are LCC specifications and OKC plug-in. Figure 21 shows
a complete list of all interaction models implemented for both the pre-alarm
and the evavuation phase of the considered use case. It shows also the type
of peers involved and the separated interactions called by a constraint in a
given IM. The last column of the table indicates for which kind of informa-
tion gathering strategy a given IM is used. As can be noticed from the table,
all the interaction models are used in both centralised (C) and decentralised
(D) scenarios, but one: the “Check Route State” IM, which is only used to
interact with the central peer CP.

Figure 21: e-Response Interaction Models

The table therefore shows that the interaction models are modular and
reusable in different contexts.

25

Reuse of the “Querier-Reporter”interaction model

From the point of view of the information gathering strategy, the key
interaction model is the “Querier-Reporter”. Thus, it is interesting to de-
scribe the mechanism through which this very same specification is used
to enable both centralised and decentralised scenarios (see Figure 22). In
the centralised scenario the Civil Protection peer subscribes to this IM with
the subscription description querier(all). This makes the CP peer interacting
with all the reporters. Moreover, the CP peer enacts the interaction continu-
ously, i.e., at each time-step. On the other hand, in the decentralised scenario
the moving peer subscribes to the same interaction with the subscription de-
scription querier(Path) as already described in section 4.1. Finally, the peer
MP enacts this interaction only when needed, i.e., when it has to move.

Figure 22: The “Querier-Reporter” IM Reuse

Reuse of OKC methods

Beside reusing the interaction models, the e-Response system implemen-
tation was aided by the reuse of OKC components, even though in a minor
degree. From one side, we have different peers using exactly the same OKC.
For example, the UtilOKC Java class provided by the OK kernel was a use-
ful OKC component shared by all peers in our simulation. Such component
provides basic methods for variable increment, decrement, comparison and
so on. On the other side, we have OKC components organized in a hierar-
chical way. Exploiting the Java’s inheritance mechanism is, in fact, possible
to define OKC components which will be used by many peer types only
once. For example, the OKC component ConnectOKC used to include all
the methods needed to solve the constraints in the “Sensory-Info” IM, is
stored by the peers previously denoted as physical peers and, where needed,
it is extended. In our case, while the Civil Protection peer needs to enact the

26

“Querier-Reporter” IM every time it receives sensory info from the controller,
the moving peer does not. The former peer will therefore use an OKC com-
ponent which extends the Java class ConnectOKC and contains a method,
namely “update info”, that overrides the one defined in the base class and
includes the enaction of the “Querier-Reporter” interaction model.

5 The e-Response Summative Experiment

In this section we describe the evaluation of the OK framework in the e-
Response domain. We designed a series of experiments with a three-fold
aim:

1. Show the OpenKnowledge system in action, illustrating that all parts
of the system are capable of working cohesively in the desired manner;

2. Demonstrate that the technology provided by OpenKnowledge sup-
ports different models of information sharing (centralised vs decen-
tralised scenario);

3. Establish whether the OpenKnowledge paradigm can make positive dif-
ferences in performance between such disaster scenarios. In particular,
what is expected (and desirable) is to have the OK p2p framework com-
parable in performance to traditional centralised systems and, when
specific fault conditions arise, improving such conventional systems.

While the achievement of the first two objectives depends on an appropri-
ate and efficient design of the OK components (IMs, OKC’s), the third goal
is less straightforward and hides a certain complexity. Since it is the core
of the whole e-Response summative experiment, it deserves a more punctual
explanation. We started from the following general evaluation hypotheses:

There exists some combination of interaction model sharing, ontology
matching and trust assessment capable in a highly distributed and peer to
peer architecture of rivalling the emergency response performance we would
expect in a traditional centralised planning model; furthermore, the perfor-
mance of the peer-to-peer system is more robust in the presence of failure of
components.

This general hypothesis is insufficiently precise to be tested directly so
we consider a more specific hypothesis:

In simulations using the OpenKnowledge kernel for coordination, Trentino
GIS/flood data to represent world state and locational information about peo-
ple and resources, there exists some combination of OpenKnowledge inter-
action model sharing, ontology matching and trust assessment capable with
a decentralised peer-to-peer system of coordination (relying on the ontology

27

matching and trust mechanisms) and of moving similar numbers of people to
safe sites during a simulated flood event as we observe in simulations with
a centralised system of coordination. Furthermore the performance of the
peer-to-peer system is more robust to the failure of sensors and breakdown of
communication channels.

The above hypothesis is quite plausible but nevertheless compound. In
order to investigate it, we built up a framework consisting of four steps: (i)
analysis of the variables involved; (ii) determination of meaningful assump-
tions; (iii) definition of experiments in all their details; (iv) specification of
expected results; (v) design of a supporting ICT infrastructure; (vi) experi-
ment execution. These steps will be described in the next sections. However,
it is worth to anticipate here that two main types of experiments are de-
signed: experiments simulating emergency scenarios in presence of ideal and
fault conditions.

Once the framework is established and its phases completed, the final task
is to run each experiment. In order to prove the hypothesis, it is crucial to
run each experiment a significant number of times. This is probably the most
timeconsuming and burdensome task since the number of peers involved is
considerable and the current version of the OK kernel is not yet definitively
stable with a relative high number of peers and concurrent interaction models.
For this reason, for this deliverable, we focused on collecting a significant
number of runs of the first type of experiments (centralised and decentralised
e-Response scenarios without fault conditions). We will focus on statistically
interpretable results for the experiments with faults cases in future work.

5.1 Performance Measurement and Involved variables

In the context of our experiments, what we measure as performance is:

(a) the percentage of moving peers arriving at destination;
(b) the number of timesteps needed to arrive at destination.

The above indicators will be used to compute the results of the experi-
ments and to make a comparison among them.

As already anticipated, the first step needed to develop the evaluation
is to carry out an analysis of the variables involved. Notice that for each
experiment designed, a certain number of runs need to be made. A list of
the variables considered in the experiments follows:

A. Number of moving peers : the number of peers moving to a specific
destination. Since the main aim of the summative experiment is to
compare two different strategies (centralised vs decentralised) rather
than making a realistic simulation, it is reasonable to fix this variable
to 1 in all experiments. By running an experiment a certain number
of times, we can then compute the performance (a) of the simulated
scenario;

28

B. Paths : these are the routes in the topology considered in the experi-
ments. In order to have significant results, it is important to consider,
for each experiment type, a meaningful set of routes, that is, routes
covering both flooding and non-flooding areas.

C. Flooding law : models how the flood evolves over time. The flooding law
markedly affects the outcome of an experiment run. For example, the
moving peer may either arrive at destination or be blocked dependently
on how rapidly the flood propagates along the route taken. In our
experiments, the flooding law is fixed and follows the equation 1 of
section 4.2.2.

D. Number of nodes : locations included in the topology and whose status
can be reported by some peer. Incrementing this number is useful to
test the capacity of the OK kernel to support many peers. In our
testbed, this variable is the number of nodes composing only those
routes involved in a given experiment.

E. Number of (reporter) peers per node: the number of reporters located
in one node. As before, this variable is useful to test the robustness of
the OK kernel and, moreover, the effectiveness of some of its modules
(e.g., the trust module [18]). Since dedicate experiments already exist
which test such modules (see [19] for more details) and given that our
summative experiment aims to discover, if some, eventual benefits of
a p2p coordination strategy over a more standard centralised one, we
fixed this variable to 1.

F. Degradation of the CPU communication channel : measured as the like-
lihood of a fault in the communication channel of the Civilian Protec-
tion Unit peer. For example, having a degradation of the 80% means
to have this peer serving incoming requests only the 20% of the times.
This variable plays a role in the experiments which foresee the presence
of inaccurate signaling. In particular, by setting this variable, a specific
type of fault (channel fault) and its severity can be simulated.

G. Degradation of reporter communication channels : defines, for all re-
porter channels, the probability of their disruption. For example, hav-
ing a degradation of the 30% means to have each reporter peer serving
incoming requests with the likelihood of the 70%. This variable plays
a role in the experiments which foresee the presence of channel fault
conditions. As for the previous parameter, the setting of this variable
determines the degree of severity of the channel fault.

H. Distribution of trustworthy (reporter) peers : defines the number of re-
porter peers having a trustworthy behaviour, that is, peers which al-
ways report accurate water level values. It is expressed as the percent-
age over the total number of reporter peers. This variable plays a role

29

in the experiments which foresee the presence of fault conditions. In
particular, by setting this variable, a specific type of fault (fault due to
inaccurate info), its location and its severity can be simulated. In the
implemented experiments, we assumed all peers were trustworthy.

5.2 Experiment design

A suite of experiments is defined in order to investigate whether the OK
framework is capable of supporting emergency evacuation activities which
adopt two different models of information sharing (centralised vs distributed
strategy). Furthermore, we want to compare the performances of these
strategies according to our previously defined indicators. We designed two
main classes of experiments:

- Experiments with No Fault Conditions : set of experiments sim-
ulating both centralised and decentralised scenarios which evolve under
ideal conditions: the absence of faults (e.g., failures in communication,
inaccurate signaling) is assumed.

- Experiments with Fault Conditions : set of experiments simulat-
ing both centralised and decentralised scenarios where the presence of
faults (e.g., failures in communication, inaccurate signaling) is assumed.

Before moving to describe the experiments in more details, it is important
to mention here the assumptions made to interpret the results in a reasonable
way. Moreover, such assumptions are driven by the current number of peers
involved and the actual mechanism of the simulation. They are:

I) The Civilian Protection Unit (CPU) peer has infinite resources (under
ideal conditions). This means that the peer is able to serve any number
of simultaneous requests and the communication channel never breaks.
Therefore, under this assumption, bottleneck problems due to over-
whelming requests and/or communication overloads never occur.

II) A querier, asking a certain number of reporters for information, will
receive all the answers within a timestep. This is due to how the
timestep interval is set: the value is such that the time elapsing between
one timestep and the next one is sufficiently high to guarantee the
replies from all the reporters.

By making these assumptions, we simulate a real case scenario where pros
and cons of both centralised and decentralised architecture are balanced.

In the next sub-sections, we first describe the experiments without con-
sidering the fault conditions. Then, we introduce different types of faults
and, finally, we illustrate the experiments where these faults are injected.

30

5.2.1 Experiments with No Fault Conditions

In this first suite of experiments we assume that there are not faults neither
on civil protection communication channel nor on reporters communication
channels and that all peers are trustworthy. Since moving peers do not
interact (at present), the following experiment settings are equivalent:

(A) Running an experiment only one time with many peers that are moving
from different locations to different destinations;

(B) Running many times each experiment with only a peer that is moving
from a different location to a different destination at each run.

Below we describe how some of the previously defined variables were in-
stantiated, adopting the experiment setting (B). In this case, centralised and
decentralised simulations have the same configuration apart the experiment
type.

• Number of moving peers (A): one moving peer per run;

• Paths (B): at each run the moving peer has to cover a different distance;

• Flooding law (C): the equation is fixed;

• Number of nodes (D): we don’t have a reporter peer on each node of the
topology, but we locate, at each run, 70 reporters in different nodes;

• Number of (reporter) peers per node (E): one reporter peer per node.

Variable Settings
Exp No Information Gathering Runs A B C D E

1 centralised 10 1 1 distance x run fixed 70 x run 1
2 decentralised 10 1 1 distance x run fixed 70 x run 1

Table 1: Experiments configuration (no fault conditions)

Table 1 summarizes the experiment configuration: each experiment is
run 10 times; at each run, the only variables that change are the distances
that should be covered by the moving peer and the locations where reporters
are present. Such locations are determined according to the set of routes
associated with the destination assigned to the peer and its starting position.
The flooding law, the number of emergency subordinates and the number of
reporters remain unchanged during all runs.

Running the above experiments and under the assumptions (I) and (II),
we expect that the results we obtain are similar and therefore we should be
able to conclude that the OpenKnowledge framework is capable of supporting
centralised and decentralised architectures with comparable performance.

31

5.2.2 Introducing fault conditions

We constructed a basic fault tree analysis for the e-Response simulation in
order to identify the types of failures and their relation with events that can
occur in our simulation. We did not associate probabilities to faults in order
to estimate likelihoods of these events; rather, we performed this analysis
only as a means to guide us in the experiment design. In our simulations, we
considered two primitive faults:

• Communication failures : the channels are broken;

• Inaccurate signaling : the water level is inaccurately reported.

In Figure 23, a possible fault tree17 is shown. In the graph, primitive
faults (represented as rectangles) are applied to two different initial condi-
tions (represented as circles): safe water level or unsafe water level. In the
first case, an inaccurate information reporting results from a sensor signaling
an unsafe water level, while, in the second case, it is due to a sensor signaling
a safe water level. Starting from the right upper part of the graph, i.e., from
the “Sensor fails to communicate” fault and the “Unsafe water level” top
condition, the bottom event “Person does not reach safe area” is deduced
from the intermediate “No hazard signal” condition and the “Person guided
to unsafe area” event. The above depicted path represents the case in which,
if the water is at unsafe level and the communication channel is broken, the
person may not reach a safe location.

To simulate these faults we changed the behavior of reporter and civil
protection peers, that is, we changed the Java methods in the related OKC
components. An inaccurate information reporting from a sensor peer can be
simulated by introducing some noise in the real water level received from the
simulator as described in [19]. It can be noticed that this fault is restricted
to sensor peers, since we assume that, in the centralised scenario, the CP is
always trustworthy. A broken channel, instead, can be simulated for both
sensor and CP peers by not sending a response message when the peer in
question is queried. The faults above can occur with different frequencies:
their probabilities are modeled using the variables described in section 5.1
(Distribution of trustworthy (reporter) peers , Degradation of the CPU com-
munication channel and Degradation of reporter communication channels).

5.2.3 Experiments with Fault Conditions

In our overall work in the e-Response scenario, we have considered two fault
conditions, namely: (1) inaccurate and false signaling form the reporters
and (2) degradation of communication channels. The inaccurate signaling
fault has been explored in detail in the evaluation of the Trust component
in Deliverable 4.9 [19]. The main result there is that the use of the OK

17The fault tree has been proposed by Dave Robertson.

32

Figure 23: Basic fault tree graph for e-Response simulation

framework, and specifically the OK Trust component, provide a relevant
improvement in the performance of the selection of the most reliable peers
to interact with.

Here, we have focused our attention on the second type of fault condition,
i.e. degradation of communication channels. To this end, we have designed
the following four types of experiments:

• Experiment 1 : centralised scenario with perfect CPU and fixed degra-
dation of sensor communication channels;

• Experiment 2 : centralised scenario with CPU channel degraded at
30% and fixed degradation of sensor communication channels;

• Experiment 3 : centralised scenario with CPU channel degraded at
80% and fixed degradation of sensor communication channels;

• Experiment 4 : decentralised scenario with a fixed degradation of
sensor communication channels.

Figure 24 facilitate to visualise the experiments described above. In par-
ticular, it shows where the communication channel faults could be located.

Also for this suite of experiments, we adopt equivalence (B) and we con-
figure variables as described in section 5.2.1. Here, however, we consider two
more variables: Degradation of the CPU communication channel (F) and
Degradation of reporter communication channels (G).

Table 2 summarizes the experiment configuration when a broken chan-
nel fault is injected into the system. In this table, Number of moving peers,

33

Figure 24: Communication channel faults: centralised and decentralised strategy

Variable Settings
ExpNo Info Gathering Runs F G

1 centralised 10 0% 30%
2 centralised 10 30% 30%
3 centralised 10 80% 30%
4 decentralised 10 not applied 30%

Table 2: Experiments configuration (with fault conditions)

Paths, Flooding law, Number of nodes and Number of (reporter) peers per
node variables are not shown since they are instantiated as described in sec-
tion 5.2.1. Briefly we remark that each experiment is run 10 times and that,
at each run, only the Paths variable changes.
Regarding the new variables (F and G), we designed the experiment by chang-
ing only the probability of breakdowns in the CP communication channel
since we want to explore how severe is the impact of faults at the central-
ising element. If we also want to explore the impact of faults in the sensor
communication channels, we have to repeat the above defined experiments
modifying the variable G.

5.3 Experiment setup and launch

In this section we present details of the architecture used to run experiments
for the e-Response testbed. In order to run an experiment, a process for each
involved peer needs to be launched. For this purpose, we developed a Java
program that reads the selected configuration variables from a database and
then launches the processes with different combination of parameters. Some
features of the peer processes are dynamically set up at run time, reading
configuration parameters from a database, according to the case we want to
test. This mechanism exploits the distributed nature of the OK platform.
For example, while the Discovery Service (DS) [16] is run in one server,
the processes associated with the reporter peers are launched in a different
machine. Peers involved in the experiment are:

34

• Discovery Service : it is an OK infrastructure peer. We launch only
one DS peer.

• Simulator : it starts the whole simulation and it plays the controller
role in many interaction models. For each experiment run we launch
one simulator peer. When we launch this peer we set up the following
parameters that are used in the initialization phase of the Simulation
Cycles interaction model (see A-2.1.1):

– Experiment id : it identifies the current e-Response experiment. It
is used to read configuration settings and to store results in the
database;

– Run count : it identifies the particular run number for the above
specified e-Response experiment;

– Max number of simulation cycles : it represents the duration of
the simulation. It has to be sufficiently high to guarantee that all
moving peers have enough time-steps to reach their destinations;

– Expected number of peer connections and average peer connection
time: these two parameters are used to calculate the maximum
amount of seconds the simulator has to wait for connecting peers
before reaching a connection timeout and going on with the exe-
cution of the interaction model;

– Water level threshold : this value sets the minimum water level
beyond which a road is considered blocked. It strongly affects the
outcome of an experiment run.

• Flood sub-simulator : it is the peer that simulates the flood evo-
lution event in Trento. We only have one flood sub-simulator peer.
At run time we dynamically set up a parameter in the flooding law
implementation that regulates the flood evolution rate for the current
simulation: we decide how many time-steps correspond to one hour in
the real world.

• Emergency Chief : it starts the evacuation phase by sending to a
moving peer the directive to go to a specific destination. This goal, for
each moving peer involved in the current run, is set up dynamically
reading the experiment configuration in the database. We have only
one peer of this class.

• Moving peer : it is the peer that during the simulation goes from
a starting node to a specific destination. In all experiments we ran
we have only a moving peer but the database schema and the Java
program are designed to launch any number of peers in parallel. This
program is also used to configure other parameters like the peer name,
the peer selection strategy (randomly, trust score based, user based,

35

etc.), its initial position and the experiment type (i.e. centralised or
decentralised).

• Route Service : it provides a route that connects two given locations.
We have only one peer of this class.

• Civil Protection : it gives information on the blockage state of a
given path. For this peer we dynamically set up the peer selection
strategy and the state of the communication channel. In the suite
of experiments run, the channel is always ideal (with infinite band
and without breakdowns), but the database is designed to have any
probability of errors in the transmission. We have only one peer of this
class.

• Reporters network : it is a collection of peers that gives informa-
tion on the water level registered at their location. In our experiments
it turns to be a service peers network, i.e., a set of sensors perma-
nently placed at a location. We launch about 70 sensor peers using the
methodology described in [19].

5.3.1 Database description

Figure 25: Entity-Relationship diagram for the e-Response experiment

The entity-relationship (ER) diagram of Figure 25 represents the overall
logical structure of the database used in the e-Response summative experi-
ment. It shows only the most meaningful entities and relationships.

The most important entity is experiment . It is defined by a description,
the total number of runs for each experiment, the total number of sensor peers
that will be launched, the maximum duration of the simulation expressed in

36

time-steps and the number of distances that will be covered during experi-
ments runs. As you can see from the following SQL query, if its value is one,
then all peers in all runs cover the same distance, otherwise at each run they
cover a different one.

SELECT to_node FROM distance WHERE distance_id IN
(SELECT CASE

WHEN covered_distances = 1 THEN 1
ELSE runNumb

END
FROM experiment WHERE sim_exp_id = expID)

The distance entity is represented by the starting node, the destination
node, the number of possible paths from these two nodes, the minimal path
length, expressed in number of nodes gone through, and the minimal path
distance, expressed in meters. This object is related to the node entity that
has x and y geographical coordinates attributes. The coordinate reference
system is UTM-WGS84. Table 3 shows the physical implementation of the
distance table with some example records.

distance id from node to node number of paths minimal path length minimal path distance

1 177 8 12 28 5630
2 177 100 10 18 2192
3 177 87 12 36 7531
4 177 76 12 26 3701
5 76 310 24 20 5174
6 188 245 6 19 4916
7 51 346 6 20 4292

Table 3: Records from the distance physical table

An experiment has also a type that describes how peers share informa-
tion. A type could be centralised or decentralised. As you can see from the
above ER diagram, the same type can be taken by many experiments.

An other many-one relationship is with CPU channel fault entity.
This entity describes the probability of channel breakdown at CPU side. For
the current experiment we defined three types of channel fault: a perfect channel,
with an error probability of 0%; a low channel fault, with an error proba-
bility of 30%, and a high channel fault, with an error probability of 80%.
In Table 4 you can see the physical experiment table with some records.

exp id description run type id channel fault id distances peers time-steps

5 Centralised 10 2 1 10 73 50
6 Decentralised 10 3 1 10 73 50
11 InaccurateInfo CentDecent 10 4 1 1 292 80
13 Decentralised CHFault 10 3 1 1 73 80
121 Centralised CHFault PerfectCP 10 2 1 1 73 80
122 Centralised CHFault LowCPError 10 2 2 1 73 80
123 Centralised CHFault HighCPError 10 2 3 1 73 80

Table 4: Records from the experiment physical table

Many peers join an experiment. First of all, there are one or more mov-
ing peers that should go from an initial location to a destination. Each

37

moving peer is represented by a name and is related to the selection strat-
egy entity. This entity represents the way in which a moving peer selects
a reporter peer in the decentralised scenario. In our experiments, we used
always the same selection strategy but experiments were carried out where
different strategies are tested [19]. In Table 5 you can see how the many-to-
many relationship between the experiment entity and the moving peer entity
is phisically implemented in the database.

id exp id peer id

5 5 1
6 6 23
7 11 2
9 11 4
10 11 5
11 11 6
12 11 7

Table 5: Records from the experiment moving peer physical table

Sensor peers also join an experiment. They are located at a node and
they send information about the flooding level.
Each sensor peer has a behavior , i.e., the error that will be added to the
real water level values given by the flood sub-simulator. The behavior could
be Correct behavior, with an error of 0, or Incorrect behavior, with an error
of 0.9. In the e-Response experiments we use only sensor peers with correct
behavior, see [19] for the description of the other cases.
Moreover, a sensor peer has an OKC. The OKC entity defines how a sensor
peer will satisfy the constraint defined in an interaction model. For the
purpose of our experiment we always use the same OKC class, that has
methods that match perfectly the corresponding constraints in the interaction
model subscribed. Differently, in project Deliverable 4.9 [19] we used different
OKC classes since we wanted to test the OpenKnowledge Matcher module
[20]. In Table 6 the physical implementation of the sensor peer table with
some example records is shown.

peer id peer name nodeid behavior id okc id exp id

1024 Correct node2 peer1024 okc1e1.0exp8.com 2 1 1 8
1025 Correct node3 peer1025 okc1e1.0exp8.com 3 1 1 8
1026 Correct node4 peer1026 okc1e1.0exp8.com 4 1 1 8
1027 Correct node6 peer1027 okc1e1.0exp8.com 6 1 1 8
1028 Correct node9 peer1028 okc1e1.0exp8.com 9 1 1 8
1029 Correct node10 peer1029 okc1e1.0exp8.com 10 1 1 8
1030 Correct node12 peer1030 okc1e1.0exp8.com 12 1 1 8
1031 Correct node14 peer1031 okc1e1.0exp8.com 14 1 1 8

Table 6: Records from the sensor physical table

Finally, the result entity models the outcome of an experiment run for
a particular moving peer. In the ER diagram you can note, in fact, that it
is related to the experiment entity, the moving peer entity and the outcome

38

entity. In our experiment runs the outcome is simply either arrived or not
arrived. This entity is also defined by two attributes indicating respectively
when an experiment run starts and ends, by putting the effective number
of nodes gone through to reach the destination and how many time-steps
were needed. These two last attributes are very interesting because they
can be used to analyse performance run. For example we can compare the
effective number of nodes gone through to the minimal path length of the
corresponding distance. We can also compare the total number of time-steps
needed to reach the destination to the respective value of others runs that
cover the same extent.
Since at run time, for the same experiment configuration, we can set at
which water level a road is blocked, we also have a water level threshold in
result’s attributes. The last attribute is the amount of time-steps missed
during a run. This attribute was used to analyse the OpenKnowledge kernel
robustness. In Table 7 the physical implementation of the sensor peer table
with some example records is shown. Unlike previously described tables, this
table is populated at run time: some values are inserted at the beginning of
an experiment run, some others at its end.

resultId expId run peerId outcomeId starting time ending time pathLength Tstep WL missedTS

159 6 1 23 1 2008-11-27 11:51:33 2008-11-27 12:03:11 28 29 0.8 0
165 6 2 23 3 2008-11-27 15:55:19 2008-11-27 16:02:08 17 18 0.8 0
170 6 3 23 1 2008-11-27 18:23:12 2008-11-27 18:38:42 36 37 0.8 0
171 6 4 23 3 2008-11-27 22:26:47 2008-11-27 22:34:57 17 18 0.8 0
174 6 5 23 3 2008-11-28 10:18:34 2008-11-28 10:31:06 30 31 0.8 0
175 6 6 23 1 2008-11-28 10:34:46 2008-11-28 10:43:12 19 20 0.8 0
177 6 7 23 1 2008-11-28 11:17:59 2008-11-28 11:26:21 20 21 0.8 0
183 6 8 23 1 2008-11-28 14:08:00 2008-11-28 14:13:12 11 12 0.8 0
185 6 9 23 1 2008-11-28 14:50:36 2008-11-28 15:04:21 30 31 0.8 0
196 6 10 23 1 2008-11-29 11:36:23 2008-11-29 11:47:33 26 27 0.8 0

Table 7: Records from the result physical table

5.4 Experimental results

The experiments we have run for the e-Response test-bed are the ones con-
sidered in section 5.2.1, i.e., the experiment designed without any fault con-
dition.

Each experiment consists in the simulation of the evacuation scenario
described in the previous section. Independently on the kind of strategy
adopted, the final goal of an emergency subordinate is to safely reach the
assigned destination. There are three situations which may happen: (1)
the agent reaches the destination by following the first route found; (2) the
agent finds blocked routes but finally reaches the destination after a number
of alternative paths and (3) the agent does not reach the destination at all.
We refer to each situation as the outcome of the experiment.

We run each experiment 10 times. The simulations were visualized on the
GUI in order to analyze the movements of the emergency peers and verify
the correct mechanism in the coordination among the agents.

39

Figures 26 and 27 show a simulation run for the centralised and the
decentralised scenario respectively. Figure 26 shows the agent out from the
flooded area. Here, all the dots are grey, meaning that all reporters are
being queried by the Civil Protection in order to obtain the water level of
their location. Some of them register high levels of water.

Figure 26: GUI: Centralised information gathering

Figure 27 shows the agent moving along a route which can be deduced by
the grey dots ahead the agent; these dots represent in fact those reporters lo-
cated along the route followed and therefore queried by the moving agent; all
the other reporters remain available (green dots). Here, the OK paradigm is
exploited in its decentralised nature, since the information gathering is based
on the use of distributed information reporter agents and not on an unique
provider, as in the first case.

Figure 28 shows the outcome distribution obtained by running 10 times
the first experiment. As can be seen, 70 percent of the times, the experiment
has outcome (1) (the peer reaches the destination without problems) while
30 percent of the time, the outcome is (3) (the peer does not reach the des-
tination). The outcome (2) is never obtained. Although we setup the routes
in order to cover different kind of areas (either safe or flood-prone areas), the
case where an agent finds free routes after a re-routing never happens. This
could be explained by considering how the design of the flooding law and its
related “flood speed” affects the evolution of the scenario. The outcome dis-
tribution related to the second experiment, which simulates the decentralised
scenario, is identical to the one found for the first experiment and hence is
not reported here. This result can be explained with the assumptions pre-
viously made: asking information on the route’s practicability to either the

40

Figure 27: GUI: Decentralised information gathering

Civil Protection or reporters scattered around the city does not make the
difference.

Figure 28: Outcome Distribution (centralised/decentralised scenario)

Figure 29 shows the time taken (measured as the number of simulation
time-steps) by an agent to reach the goal location according to the shortest
distance (in terms of intermediate locations) between the initial position and
the final destination. The trend is shown for both experiments. It can be
observed that, in both cases, the time needed to achieve the goal is nearly
equal to the shortest distance. This can be explained by how the simulation
is designed - an agent moves from a location to the next one exactly in a
time-step - and by the missing outcome (2). Finally, Figure 29 reveals very
similar trends for both centralised and decentralised scenarios. Again, this
is mainly due to the assumptions made and the variable settings.

In view of the results described above, we can conclude that our first

41

Figure 29: Time-steps vs. Path Length

expectation is met: the use of the OK framework supports both architectures
(centralised and decentralised) and provides comparable performances under
the selected - ideal - assumptions.

6 Conclusions and Future work

Our work focused on testing whether the OK framework is capable to sup-
port the coordination of emergency activities and how, in absence of fault
conditions, the OK p2p framework is comparable in performance to tradi-
tional centralised gathering approaches. An agent-based e-Response simu-
lation system fully integrated with the OpenKnowledge infrastructure has
been developed. This system currently runs on Java and exploits the dis-
tributed nature of the OK platform. It is used to model specific emergency
scenarios and agents in terms of both LCC specifications and OKC compo-
nents. A suite of experiments has been designed and run to evaluate the
performance of the OK e-Response system in different scenarios and under
specific assumptions. The preliminary results thus obtained show how the
OK infrastructure is equally effective in both centralised (hierarchical) and
decentralised (p2p) information gathering.

We are currently working on further experiments. In particular, we want
to repeat the reported experiments both increasing the number of runs and
tuning parameters like the “flood speed” and the routes to follow, in a way
that more varied outcomes can be obtained. In this way, we could reconfirm
our hypothesis in a more robust setting. Also, we want to run experiments
where the communication channel faults described in section 5.2.2 are in-
jected. What we want to investigate by running these experiments with
communication faults, is if - and eventually under which conditions - a com-
plete p2p architecture improves the overall performance and robustness over
traditional centralised architectures.

Finally, from the point of view of the simulated scenarios and the involved

42

agents, it would be interesting to consider the reporter agents as mobile emer-
gency agents rather than fixed sensors. In this way, we could explore how the
OK platform supports the coordination of team-members in an emergency
site.

7 Acknowledgments

We are thankful to Dave Robertson for his advices on the formulation of the
hypothesis to test. We are much grateful for the constant support of Paolo
Besana, who gave us numerous feedbacks on the OK kernel. Also, we are
grateful to David Dupplaw for the development of the emergency GUI, to
Juan Pane who developed the database we further extended and to Fiona
McNeill who developed the initial prolog controller that we adapted to the
OK platform.

References

[1] Lorincz, K., Malan, D., Fulford-Jones, T., Nawoj, A., Clavel, A., Shnay-
der, V., Mainland, G., Welsh, M., Moulton: Sensor networks for emer-
gency response: challenges and opportunities. Pervasive Computing 3
(2004) 16–23

[2] Mecella, M., Catarci, T., Angelaccio, M., Buttazzi, B., Krek, A., Dust-
dar, S., Vetere, G.: Workpad: an adaptive peer-to-peer software in-
frastructure for supporting collaborative work of human operators in
emergency/disaster scenarios. In: Proceedings of the 2006 International
Symposium on Collaborative Technologies and Systems. (2006)

[3] D’Aprano, F., de Leoni, M., Mecella, M.: Emulating mobile ad-hoc
networks of hand-held devices. the octopus virtual environment. In:
Proceedings of the first ACM Workshop on System Evaluation for Mo-
bile Platform: Metrics, Methods, Tools and Platforms (MobiEval) at
Mobisys. (2007)

[4] Robertson, D.: A lightweight coordination calculus for agent systems.
Lecture Notes in Computer Science - DALT 3476 (2005) 183–197

[5] Bellamine-Ben, S.N., Dugdale, J., Pavard, B., Ahmed, M.B.: Towards
planning for emergency activities in large-scale accidents: An interac-
tive and generic agent-based simulator. In: Proceedings of the first
International workshop on Information Systems for Crisis Response and
Management. (2004)

[6] Murakami, Y., Minami, K., Kawasoe, T., Ishida, T.: Multi-agent simu-
lation for crisis management. In: Proceedings of the IEEE International
Workshop on Knowledge Media Networking. (2002)

43

[7] Bellamine-Ben, S.N., Mena, T.B., Dugdale, J., Pavard, B., Ahmed,
M.B.: Assessing large scale emergency rescue plans: an agent based
approach. special issue on emergency management systems. Interna-
tional Journal of Intelligent Control and Systems 11 (2006) 260–271

[8] Kanno, T., Morimoto, Y., Furuta, K.: A distributed multi-agent simu-
lation system for the assessment of disaster management systems. Inter-
national Journal of Risk Assessment and Management 6 (2006) 528–544

[9] Massaguer, D., Balasubramanian, V., Mehrotra, S., Venkatasubrama-
nian, N.: Multi-agent simulation of disaster response. In: Proceedings
of the First International Workshop on Agent Technology for Disaster
Management. (2006)

[10] Helin, H., Klusch, M., Lopes, A., Fernandez, A., Schumacher, M.,
Schuldt, H., Bergenti, F., Kinnunen, A.: Context-aware business ap-
plication service co-ordination in mobile computing environments. In:
Proceedings of the fourth conference of Autonomous Agents and Multi
Agent systems - Workshop on Ambient Intelligence - Agents for Ubiq-
uitous Computing. (2005)

[11] Han, L., Potter, S., Beckett, G., Pringle, G., Sung-Han, K., Upadhyay,
R., Wickler, G., Berry, D., Welch, S., Usmani, A., Torero, J., Tate, A.:
Firegrid: An e-infrastructure for next-generation emergency response
support. In: Submitted to Royal Society Phil. Soc. A. (2009)

[12] Vaccari, L., Marchese, M., Giunchiglia, F., McNeill, F., Potter, S., Tate,
A.: OpenKnowledge Deliverable 6.5: Emergency response in an open
information systems environment. http://www.cisa.inf.ed.ac.uk/

OK/Deliverables/D6.5.pdf (2006)

[13] Vaccari, L., Marchese, M., Shvaiko, P.: OpenKnowledge Deliverable 6.6:
Emergency Response GIS Service Cluster. http://www.cisa.inf.ed.

ac.uk/OK/Deliverables/D6.6.pdf (2006)

[14] Marchese, M., Vaccari, L., Trecarichi, G., Osman, N., McNeill, F.: In-
teraction models to support peer coordination in crisis management.
In: 5th International Conference on Information Systems for Crisis Re-
sponse and Management. (2008)

[15] de Pinninck, A.P., Dupplaw, D., Kotoulas, S., Schorlemmer, M.,
Siebes, R., Sierra, C.: OpenKnowledge Deliverable 1.2: Peer to peer
coordination protocol. http://www.cisa.informatics.ed.ac.uk/OK/

Deliverables/D1.2.pdf (2006)

[16] Kotoulas, S., Siebes, R.: OpenKnowledge Deliverable 2.2: Adap-
tive routing in structured peer-to-peer overlays. http://www.cisa.

informatics.ed.ac.uk/OK/Deliverables/D2.2.pdf (2007)

44

[17] Alkema, D., Cavallin, A., Amicis, M.D., Zanchi, A.: Valutazione degli
effetti di un alluvione: il caso di trento. Studi Trentini di Scienze Nat-
urali : Acta Geologica 78 (2003) 55–62

[18] Pane, J., Sierra, C., de Pinninck, A.P., Shvaiko, P.: OpenKnowledge
Deliverable 4.8: Plug-in component supporting trust. http://www.cisa.
informatics.ed.ac.uk/OK/Deliverables/D4.8.pdf (2007)

[19] Pane, J., Sierra, C., Trecarichi, G., Marchese, M., Besana, P., McNeill,
F.: OpenKnowledge Deliverable 4.9: Summative report on GEA, trust
and reputation: integration and evaluation results. http://www.cisa.

informatics.ed.ac.uk/OK/Deliverables/D4.9.pdf (2008)

[20] Yatskevich, M., Giunchiglia, F., McNeill, F., Shvaiko, P.: OpenKnowl-
edge Deliverable 3.4: Ontology matching component. http://www.cisa.
informatics.ed.ac.uk/OK/Deliverables/D3.4.pdf (2007)

45

A-1 Prealarm Interaction Models

This appendix includes technical details for the two interaction models used
to simulate the prealarm phase.

A-1.1 Sensor monitoring.lcc

The “Sensor monitoring” interaction model is used by the Emergency Mon-
itoring System (EMS) peer to constantly monitor the flood level in critical
points along the river. To do that, the EMS interacts with water level sen-
sors placed in these points. Also, the EMS checks weather information18

(e.g., precipitation values) in order to enrich the data needed to predict
the evolution of a potential flooding. When the EMS registers a critical
situation (e.g., water level above a certain threshold and heavy rain), it
notifies the emergency coordinator who is in charge of taking the proper ac-
tions. As can be seen below, the main roles of this interaction model are
emergency monitoring system, sensor and emergency coordinator which are
played respectively by the EMS, a water level sensor and the emergency coor-
dinator (EC). The EMS, which begins the interaction, starts by initiating the
parameters that will be used during the interaction. These are the following
and are needed to set:

- Timestamp: the time of the next polling cycle;

- SPL: the list of peers playing the role of “sensor”;

- UnitMeasure: in what unit of measure a water level sensor must return
the registered value;

- SleepTime: the time elapsing between two consecutive polling cycles;

- ExpireTime: the maximum time needed to wait for incoming messages.
When this time expires the receiver continue the interaction;

- SleepTime WF : time waited by the EMS in order to ensure the most
updated weather information;

- MaxCycle: the maximum number of polling cycles. This parameter is
set in order to stop the interaction;

- NoOfCycle: the current polling cycle; by checking this paramter it can
be deduced whether the interaction will terminate or not.

Once the above parameters are instantiated, the EMS jumps to the role
emergency monitoring system1.

18The weather information are periodically retrieved in parallel to this interaction. They
are acquired through the “Weather forecast” interaction explained in the next section.

46

r(emergency_monitoring_system,initial)
r(emergency_monitoring_system1,auxiliary)
r(wl_request_sender,auxiliary,1,4)
r(risk_evaluator,auxiliary)
r(riskmsg_sender,auxiliary)
r(stop_sender,auxiliary)
r(sensor,necessary,1,4)
r(emergency_coordinator,necessary)

a(emergency_monitoring_system,EMS)::

null <- getInitialTime(Timestamp) and getUnit(UnitMeasure) and
getSleepTime(SleepTime) and getPeers(‘‘sensor’’,SPL) and
setMaxCycles(MaxCycle) and setCycleCounter(NoOfCycle) and
setExpireTime(ExpireTime) and getSleepTimeWF(SleepTime_WF) then

a(emergency_monitoring_system1(SleepTime_WF,SPL,ExpireTime,Timestamp,
UnitMeasure,MaxCycle,NoOfCycle,SleepTime),EMS)

The LCC code relative to the emergency monitoring system1 role rep-
resents the core part of the interaction model. Here, the EMS realizes the
polling cycle: it first gets, through the constraint “getForecast”, the weather
information updated to the current time; if they are not yet available, it waits
till they are acquired (sleepWF constraint); it then asks all sensor peers for
water level values (wl request sender role), hence receives their replies and
evaluate potential risks (risk evaluator role); finally, it eventually sends an
alarm to the emergency coordinator (rskmsg sender role). At this point,
some parameters are updated and the cycles starts again unless the maxi-
mum number of cycles has been reached. Among the updated parameters,
there is the RiskList variable which contains, for each sensor, the level of risk
associated with its location. Also, before leaving its role, the EMS sends a
stop message to all sensors (stop sender role) and the emergency coordina-
tor19.

a(emergency_monitoring_system1(SleepTime_WF,SPL,ExpireTime,Timestamp,
UnitMeasure,MaxCycle,NoOfCycle,SleepTime),EMS)::

(
null <- getForecast(Timestamp,Precipitation) and size(SPL,N) then
a(wl_request_sender(SPL,Timestamp,UnitMeasure),EMS) then

a(risk_evaluator(N,ExpireTime,SleepTime,Precipitation,RiskList),EMS)
then a(riskmsg_sender(RiskList),EMS)
then

(
null <- sleep(SleepTime) and

updateTime(Timestamp,NewTimestamp) and
updateRiskList(RiskList) and
inc(NoOfCycle,NewNoOfCycle) and
less(NewNoOfCycle,MaxCycle) and
updatePrecList(Precipitation) then

a(emergency_monitoring_system1(SleepTime_WF,SPL,

19The sending of stop messages is made just to let the other peers leaving their respective
roles. In a real situation one could think to have the sensors and the emergency coordinator
always in a “listening mode”

47

ExpireTime,NewTimestamp,UnitMeasure,
MaxCycle,NewNoOfCycle,SleepTime),EMS)

)
or
(

a(stop_sender(SPL),EMS) then
stop => a(emergency_coordinator,EC)

)
)

or

(
null <- sleepWF(SleepTime_WF) then
a(emergency_monitoring_system1(SleepTime_WF,SPL,ExpireTime,Timestamp,

UnitMeasure,MaxCycle,NoOfCycle,SleepTime),EMS)
)

The LCC code for the wl request sender role is expressed below. Once
in this role, the EMS scans the list SPL of the sensors and sends, to each
of them, a water level request message. The two parameters Timestamp and
UnitMeasure are specified in the message.

a(wl_request_sender(SPL,Timestamp,UnitMeasure),EMS) ::

null <- SPL=[]

or

(
null <- SPL=[H|T] then
water_level_request(Timestamp,UnitMeasure) => a(sensor,H) then
a(sender(T,Timestamp,UnitMeasure),EMS)

)

After having sent all the requests, the EMS takes the risk evaluator role
by which: (i) the replies from the sensors are received through the incom-
ing message water level ; (ii) the water level data are stored in a local DB
(store constraint); (iii) the risk associated to each sensor location is evalu-
ated (evaluate risk constraint). Notice that, in the evaluation process, the
precipitation rate is also considered together with the water level value. At
the end of this role, a list RiskList containing all the computed risks is cre-
ated. Finally, besides the above mentioned activity, the role comprises a part
that models the time elapsing. This is done by checking and decrementing
the variable ExpireTime. Once a unit time has elapsed, the role starts again
through recursion. The LCC code relative to the just described role is shown
below.

48

a(risk_evaluator(N,ExpireTime,SleepTime,Prec,RiskList),EMS)::

null <- equalZero(N)

or

(
water_level(Timestamp,SensorName,UnitMeasure,WaterLevel)
<= a(sensor,S) then

null <- store(Timestamp,SensorName,WaterLevel) and
evaluate_risk(UnitMeasure,WaterLevel,SensorName,Prec,Risk) and
dec(N,NewN) and addList(N,Risk,SensorName,RiskList) then

a(receiver_risk_evaluator(NewN,ExpireTime,SleepTime,Prec,RiskList),EMS)
)

or

(
null <- equalZero(ExpireTime)

or

(
null <- sleep(SleepTime) and dec(ExpireTime,NewExpireTime) then
a(receiver_risk_evaluator(N,NewExpireTime,SleepTime,Prec,RiskList),EMS)

)
)

or

(
null <- sleep(SleepTime) then
a(receiver_risk_evaluator(N,NewExpireTime,SleepTime,Prec,RiskList),EMS)

)

Once all (of some) water level messages are received and the RiskList is
computed, the EMS leaves the risk evaluator role to enter the riskmsg sender
role (see LCC code below). During this simple role, an alarm message is sent
to the emergency coordinator if the risk list is not empty.

a(riskmsg_sender(RiskList),EMS)::

null <- RiskList=[]

or

alarm(RiskList) => a(emergency_coordinator,EC)

The LCC code below shows the stop sender role taken by the EMS before
the interaction terminates. Here, a stop message is sent to all sensors.

49

a(stop_sender(SPL),EMS) ::

null <- SPL=[]

or

(
null <- SPL=[H|T] then
stop => a(sensor,H) then
a(stop_sender(T),EMS)

)

The role of a generic water level sensor is that of waiting for incom-
ing requests. After a request (water level request message) is received, the
constraint getWaterLevel is solved in order to retrieve the water level value
WaterLevel sensed by the sensor. The message water level is then sent to
the requester (the EMS in our case). Among the already known parameters
specified in such message, we find the WaterLevel and the SensorName pa-
rameters. The latest represents the identity of the data source, that is, the
queried sensor.

a(sensor,S) ::

(
water_level_request(Timestamp,UnitMeasure) <= a(sender,EMS) then
water_level(Timestamp,SensorName,UnitMeasure,WaterLevel)
=> a(receiver_risk_evaluator,EMS)

<- getSensorName(SensorName) and
getWaterLevel(Timestamp,SensorName,UnitMeasure,WaterLevel) then

a(sensor,S)
)

or

stop <= a(stop_sender,EMS)

In this interaction model, the role emergency coordinator of the emer-
gency coordinator (EC) is that of eventually receiving an alarm message
from the EMS. At the reception, the EC takes the proper actions by solving
the constraint takeActions. The actions taken will depend on the risk list
passed as parameter in the message received. For example, if the risk regis-
tered in a given river bank is at the maximum level, the evacuation is started
and the fire brigade is alerted. The role is recursive, so that the EC starts
again to wait for alarm messages unless a stop message is received. The role
described is shown below in terms of LCC code.

50

a(emergency_coordinator,EC)::

(
alarm(RiskList) <= a(riskmsg_sender,EMS) then
null <- takeActions(RiskList) then
a(emergency_coordinator,EC)

)

or

stop <= a(emergency_monitoring_system1,EMS)

A-1.2 Weather forecast.lcc

As anticipated before, this interaction model is used to periodically retrieve
weather information from a weather forecast service. The peers participat-
ing to this interaction are the Emergency Monitoring System (EMS) and a
weather forecast service. They play the main roles weather requester and
weather service respectively. The EMS initiates the interaction by entering
the weather requester role. During this role the following parameters are set:

- TotReqs : the total number of requests that will be forwarded to the
weather service. This parameter is set so to make the interaction ter-
minating;

- NoCurrReq : the number of requests forwarded so far;

- Location: the geographical location about which the weather informa-
tion are acquired;

- WParams : a list of weather parameters such as precipitation, temper-
ature, humidity, etc;

- NoDays : number of desired forecast days;

- IdleTime: time elapsing between two consecutive requests.

Once the parameters are initiated, the EMS enters the role weather poller
which represents the core part of the EMS activity. Such activity consists
on sending the message weather request with the parameters Location, No-
Days and WParams to the weather service. In our simulation, the location
is Trento, the forecast is extended to 3 days and the weather information
desired is the precipitation only. Once the above message is sent, the EMS
receives as reply the weather conditions message. The returned parameter
WParamsValues contains the value of the weather parameters specified in
the request. In our case, three values of precipitation are acquired, one for
each day. After reception of the weather service reply, the EMS stores such
values in its local database (storeForecast constraint) and stays idle for a time
period equal to IdleTime before continuing the next request cycle (recursion

51

to the same weather poller role). Notice that the cycle is repeated till the
time when a number TotReqs of requests have been sent. After this time, a
stop message is sent to the weather service and the interaction terminates.

r(weather_requester,initial)
r(weather_poller,auxiliary)
r(weather_service,necessary,1)

a(weather_requester,WR)::

null <- setTotalWFRequests(TotReqs) and
setNoCurrReq(NoCurrReq) and
getLocation(Location) and
getWeatherParams(WParams) and
getForecastLenght(NoDays) and
setIdleTime(IdleTime) then

a(weather_poller(Location,WParams,NoDays,TotReqs,IdleTime,NoCurrReq),WR)

a(weather_poller(Location,WParams,NoDays,TotReqs,IdleTime,NoCurrReq),WP)::

weather_request(Location,NoDays,WParams) => a(weather_service,WS) then

weather_conditions(Location,NoDays,WParamsValues) <= a(weather_service,WF)

then

null <- storeForecast(Location,NoDays,WParamsValues) then

(
null <- sleep(IdleTime) and

inc(NoCurrReq,NewNoCurrReq) and
lessOrEqual(NewNoCurrReq,TotReqs) then

a(weather_poller(Location,WParams,NoDays,TotReqs,IdleTime,
NewNoCurrReq),WP)

)

or

stop => a(weather_service,WF)

The weather service takes the role weather service. Here, it receives the
request message weather request from the EMS; then, it solves the constraint
getWeatherConditions in order to get the output parameter WParamsValues
from the input parameters contained in the request; finally, it returns such
parameter back to the EMS (weather conditions message) and recurses again
to its role. If a stop message is received instead of a weather info request,
the weather service ends its role.

52

a(weather_service,WS)::

(
weather_request(Location,NoDays,WParams) <= a(weather_poller,WP) then

weather_conditions(Location,NoDays,WParamsValues) => a(weather_poller,WP)
<- getWeatherConditions(Location,NoDays,WParams,WParamsValues) then

a(weather_service,WS)
)

or

stop <= a(weather_poller,WP)

A-2 Evacuation Interaction Models

This appendix includes technical details for the interaction models used to
model the evacuation phase. In the subsequent LCC code snippets: (i) a con-
straint which is solved by enacting a separate interaction model is specified
in bold; (ii) the comments are preceded by the character string “//”.

A-2.1 Interaction Models used by simulator peers

In what follows, we describe the simulation cycles and the interaction models
used by the simulator peers.

A-2.1.1 Simulation Cycles.lcc

This is the main interaction model enacted by the controller module of the
e-Response simulator. This interaction realizes the cycling needed to evolve
the simulation. The only participant of this interaction is the controller itself.
It plays the main role simulator(see LCC code below).

When the simulator role is entered, some parameters are instantiated,
the connections with the flood sub-simulator and the physical peers are es-
tablished and the simulation cycling is initiated. The parameters are:

- MaxTimeStep: total number of simulation cycles;

- SimSleepTime: amount of time the simulator stays idle after its main
operations of gathering and sending info;

- Timeout : time awaited for peer connections, expressed in seconds.
When this time expires the simulator starts the simulation cycles;

- NoExpConnections : number of expected peer connections. This num-
ber depends on the experiment and is used to compute the Timeout ;

53

- NoPeerConnected : number of peers effectively connected. Its value is
inititated to zero.

Once the above parameters are set, the controller attempts to connect
with the available disaster sub-simulators by solving the constraint con-
nectWithSubSimulators. Such constraint actually enacts the interaction model
“Flood SubSmulator Connection” described in the next section. After the
termination of this interaction, the controller knows which sub-simulator is
properly connected to it. If the sub-simulator connection fails or there are
no sub-simulators available, the “Simulation Cycles” interaction still goes
on with the result of not simulating any disaster evolution. Once the sub-
simulators are connected, the controller jump to the connections waiter role
during which the peer connections are awaited and counted20. At this point,
when both sub-simulators and peers are connected to the simulator, the
cycling is initiated (init simulation cycles constraint), the first time-step is
acquired through the getCurrentTimestep constraint and the info concern-
ing the joined peers are prepared to be sent to the visualiser (init visualiser
constraint). The controller then enters the role info handler which repre-
sents the core part of the simulation and, finally, terminates the interaction
by solving the constraint close simulation. Such constraint is used to close
database connections, delete temporary files, etc.

r(simulator,initial)
r(connections_waiter,auxiliary)
r(info_handler,auxiliary)

a(simulator,SIM) ::

null <- getSimulationCycles(MaxTimeStep) and
getSimSleepTime(SimSleepTime) and
getPeerConnectionParams(Timeout,NoExpConnections,NoPeerConnected) and
connectWithSubSimulators(MaxTimeStep) then

a(connections_waiter(Timeout,NoExpConnections,NoPeerConnected),SIM) then

null <- init_simulation_cycles(MaxTimeStep) and
getCurrentTimestep(CurrentTimestep) and
init_visualiser(CurrentTimestep) then

a(info_handler(CurrentTimestep,MaxTimeStep,SimSleepTime),SIM) then
null <- close_simulation(MaxTimeStep)

As anticipated before, the role connections waiter is used to await for a
number of peer connections. When this role is entered, the parameters Time-
out, NoExpConnections and NoPeerConnected are specified. Every second,
the simulator retrieves the number NewNoPeerConnected of peers connected
so far (getNumbConnectedPeers role) and updates the timeout NewTimeout ;

20Notice that the peer connections are actually established by means of the
“Peer Connection” interaction model which runs in parallel with the described interac-
tion and is initiated by a peer willing to connect.

54

it then recurses again to this role by passing the updated parameters. The
role ends when either the timeout has elapsed or the number of peer con-
nected is equal to the number NoExpConnections of expected connections.
Notice that, if the role is ended because of a timeout, the peers actually
connected are less than the ones expected and the interaction still continues.
However, this fact does not prevent a peer to join the simulation after this
phase.

a(connections_waiter(Timeout,NoExpConnections,NoPeerConnected),SIM) ::

null <- equal(NoPeerConnected,NoExpConnections)

or //This is to simulate the time elapsing

(null <- equalZero(Timeout)
or
(
null <- sleep(1000) and dec(Timeout,NewTimeout) then
null <- getNumbConnectedPeers(NewNoPeerConnected) then
a(connections_waiter(NewTimeout,NoExpConnections,

NewNoPeerConnected),SIM)
)

)

The role info handler constitutes the kernel of this interaction model and
dictates the sequence of the two main operations of the controller. These
operations are the following:

- Gathering : the controller receives information about the changes that
happened to the world: (a) it receives the flood changes from flood
sub-simulator and (b) it receives other changes from the peers in the
peer network that caused these changes (and verifies their validity);

- Informing : the controller sends information about the changes that
happened in the world: (a) it sends changes (called sensory-info) that
occurred in a peers vicinity to each peer in the peer network and (b) it
sends a list of all the changes to the simulator’s visualiser.

The gathering operation is realized by the gather info constraint. In such
constraint, the flood sub-simulator connection state is first retrieved and
then, if the flood sub-simulator is connected, the interaction model “Flood”
is enacted in order to get the flood changes from the sub-simulator. The
constraint ends by making the controller idle for an amount of time equals
to SimSleepTime.

The informing operation is realized by the constraints send info and in-
form visualiser. In the send info constraint, the interaction model “Sen-
sory info” is enacted in order to send contextual info to all connected peers.
When this interaction terminates, the controller stays idle again for some-
times and the time-step counter is incremented. The inform visualiser con-
straint is then solved to compute the changes occurred during the current
time-step CurrentTimestep. For example, at time-step 2, such changes can
assume the form:

55

updates(2,[[at(Tom,peer,[11.1207037,46.0587387])],
[at(reporter3,reporter,[11.1116,46.0968,0.0])]]).

The above format can be read as follows: at time-step 2, the firefighter
Tom, which is a peer, is located at the geographical coordinates (11.1207037,
46.0587387); the reporter named “reporter2” is located at the geographical
coordinates (11.1116, 46.0968)’and its status set to 0 indicates that it is
available to provide information on the water level present in its current
location.

After the changes pertaining the current time-step are computed accord-
ing to the above format, the controller enacts the interaction model “Vi-
sualiser” so to send the updates to the simulator’s visualiser. Once the
inform visualiser constraint is completed, the new time-step NewTimestep
is retrieved (getCurrentTimestep constraint) and the controller recursively
jumps back in the info handler role to start a new simulation cycle. The
role, and hence the whole interaction, terminates only when the new time-
step is greater than the maximum number of cycles MaxCycles foreseen for
the simulation.

a(info_handler(CurrentTimestep, MaxTimeStep, SimSleepTime),SIM) ::

null <- greater(CurrentTimestep, MaxTimeStep)

or

(
null <- gather_info(SimSleepTime) and

send_info(SimSleepTime) and
inform_visualiser(CurrentTimestep) and
getCurrentTimestep(NewTimestep) then

a(info_handler(NewTimestep, MaxTimeStep, SimSleepTime),SIM)
)

A-2.1.2 Flood Sub-Simulator Connection.lcc

This interaction model is played by the controller and the flood sub-simulator;
it is used to get the topology and connect the sub-simulator to the controller.
The topology defines the flooding areas, the geographical coordinates of the
locations (included strategic locations such as meeting points, refuge centers,
etc.) and their connections. This interaction model can be extended so to
connect the controller to many disaster sub-simulators.

As can be seen below, the peer playing the controller role sends a topol-
ogy’s URI to the peer playing the sub-simulator role with the aim that both
peers, during the current simulation, use the same topology of the world.
Note that the flood sub-simulator works in parallel with the controller. Since
the flood sub-simulator does not have neither data nor equations to simulate
flood evolution in all the world but only in Trento town, after downloading

56

the topology it first verifies if in its local database there is the data that
should be used to simulate the flood evolution in the region received and
then it does some other initializations, like joining the selected data using a
geospatial query.

The second aim of this interaction model is to store the flood sub-simulator
connection state in the local knowledge of the controller . The connection
state of the sub-simulator is set to “successfully connected” only if the sub-
simulator downloads the topology file without any failures. This state is
then verified in the constraint gather info of the previous interaction model.
At each time-step, if this state is successfully verified, the flood interaction
model (see section A-2.1.4) is then enacted.

r(controller,initial)
r(sub_simulator,necessary)

a(controller,C) ::

initial_topology_source(URI) => a(sub_simulator,SS)
<- getInitialTopology(URI) then
(
(got_topology(URI) <= a(sub_simulator,SS) then

null <- setFloodSubSimConnection("true"))

or

(connection_failure(URI) <= a(sub_simulator,SS) then
null <- setFloodSubSimConnection("false"))

)

a(sub_simulator,SS) ::

initial_topology_source(URI) <= a(controller,C) then
(
got_topology(URI) => a(controller,C) <- getTopology(URI)

or

connection_failure(URI) => a(controller,C)
)

A-2.1.3 Peer Connection.lcc

This interaction model is used to connect a physical peer to the simulator
and is initiated by the peer willing to join the simulation. The main roles
are connecting peer and registrar which are played by a joining peer and the
controller respectively. The controller subscribes to this interaction with the
option of running in parallel many interactions of this type. In this way,
an unfixed number of peers may connect to the simulator. This interaction
remains active till the end of the simulation.

When the peer enters the connecting peer role (see LCC code below), it
first retrieves its characterizing parameters (e.g., PeerName, PeerType, Lo-
cation) and then sends the message exist to the controller. The message

57

connected is thus received as reply from the controller. The following param-
eters are specified in the message:

- RegisteredName: the name registered by the controller to identify the
connecting peer;

- TS : the time-step at which the connection takes place;

- MaxTimestep: the duration (in time-steps) of the simulation;

- SimSleepTime: the time (expressed in seconds) used to estimate how
long the connecting peer should wait for an incoming message;

- WLThr : the water level threshold above which a node (a location in
the topology) is blocked.

The above parameters, when received, are stored in the peer local knowl-
edge through the constraint updateSimParameters. Afther this operation,
the peer enters the connected peer role.

r(connecting_peer,initial)
r(connected_peer,auxiliary)
r(interrupter,auxiliary)
r(registrar,necessary)
r(registrar2,auxiliary)

a(connecting_peer,Id) ::

exists(PeerName,PeerType,Location) => a(registrar,S)
<- get_peer_name(PeerName) and

connect(PeerName, PeerType, Location) then

connected(RegisteredName,TS,MaxTimestep,SimSleepTime,WLThr)
<= a(registrar,S) then

null <- updateSimParameters(RegisteredName,TS,MaxTimestep,
SimSleepTime,WLThr) then

a(connected_peer(MaxTimestep,PeerName),Id)

For all the duration of the simulation, the peer maintains the connected
peer role (see LCC code below). This role starts by retrieving the current
time-step Timestep. This time-step is checked against the maximum num-
ber of time-steps (MaxTimestep) foreseen by the simulation. If the current
time-step overcomes the MaxTimestep, the simulation terminated, the peer
disconnects and the connected peer role can be stopped. In the other case,
the simulation is evolving and the peer may decide (disconnect constraint) to
exit from it, or to pause it (through start pause simulation constraint) and
resume it again. When the peer wants to temporarily disconnect, the message
await decision is sent to the controller and the role interrupter is taken. Once
in this role, the peer continuously recurses till the stop pause simulation con-
straint becomes true; when this happens the message decision made is sent

58

to the controller, meaning that the peer intends to resume the simulation.
The peer goes therefore back to the connected peer role.

a(connected_peer(MaxTimestep,PeerName),Id) ::

null <- getTimestep(Timestep) then

(
null <- greaterOrEqual(Timestep,MaxTimestep) and disconnect() then

)

or

(
exit(PeerName) => a(registrar2,S) <- disconnect()

)

or

(await_decision(PeerName) => a(registrar2,S)
<- start_pause_simulation(T) then
a(interrupter,Id) then
a(connected_peer(MaxTimestep,PeerName),Id)

)

a(interrupter,Id) ::
decision_made => a(registrar2,S) <- stop_pause_simulation()
or
a(interrupter,Id)

The registrar role is the main role taken by the controller (see LCC code
below). It handles the first phase of the peer connection, that is, the recep-
tion of the exist message from the connecting peer. First, it retrieves the
maximum number of time-steps MaxTimesteps21, then it waits for an incom-
ing exist message. Once such message is received, the controller registers the
peer identity with a name RegisteredName (register constraint) and adds it
to the simulation (add peer to sim constraint). In this way, the peer location
is also registered and the current time-step Time, representing the registra-
tion time, is obtained. Also, the parameters SimSleepTime and WLThr are
retrieved through the constraints getSimSleepTime and getWLThreshold re-
spectively. If the simulation is running, these parameters are then sent back
to the connecting peer via the connected message. The controller thus takes
the role registrar2 till the end of the simulation.

21Notice that this parameter is set in the “Simulation cycles” interaction model which
started first and is running in parallel.

59

a(registrar,S) ::

null <- getMaxTimesteps(MaxTimesteps) then

(
exists(PeerName,PeerType,Location) <= a(connecting_peer,Id) then
null <- register(Id,PeerType,PeerName,RegisteredName) and

add_peer_to_sim(PeerName,PeerType,Location,Time) and
getSimSleepTime(SimSleepTime) and getWLThreshold(WLThr) and
lessOrEqual(Time,MaxTimesteps) then

connected(RegisteredName,Time,MaxTimesteps,SimSleepTime,WLThr)
=> a(connecting_peer,Id) then

a(registrar2(MaxTimesteps,PeerName),S)
)

The registrar2 role is entered by specifying the two parameters Max-
Timesteps and PeerName (see LCC code below). The current time-step
Time- step is first obtained through the constraint getTimestep. Then, the
controller can receives two types of messages from the connected peer: exit
and await decision. If the first message is received, the controller performs
the costraint remove peer from sim to definitively disconnect the peer from
the current simulation and ends the registrar2 role of this running instance
of interaction. If the second message is received, the controller solves the
constraint await decision which temporarily exclude the peer from the sim-
ulation till the message decision made is received from the peer. The peer
is therefore resumed and the controller recurses again to this role. The role
finally terminates when the MaxTimesteps are reached.

a(registrar2(MaxTimesteps,PeerName),S) ::

null <- getTimestep(Timestep) then

(
null <- greaterOrEqual(Timestep,MaxTimesteps)

)

or

(
exit(PeerName) <= a(connected_peer,Id) then
null <- remove_peer_from_sim(PeerName)

)

or

(
await_decision(PeerName) <= a(connected_peer,Id) then
null <- await_decision(PeerName) then
decision_made(Empty) <= a(interrupter,Id) then
null <- end_await_decision(PeerName) then
a(registrar2(MaxTimesteps,PeerName),S)

)

60

A-2.1.4 Flood.lcc

This interaction model is used by the controller at every timestep, in order
to get from the flood simulator the changes of the flood level registered at
the nodes in the topology.

r(controller, initial)
r(flood_simulator, necessary)

a(controller,C) ::

null <- getTimeFlood(Time) then

(
request_info(Time) => a(flood_simulator,FS) then

flood_info(Changes) <= a(flood_simulator,FS) then
null <- updateFloodChanges(Changes)

)

a(flood_simulator,FS) ::

request_info(Time) <= a(controller,C) then
flood_info(Changes) => a(controller2,C) <- floodChanges(Time,Changes)

This interaction model is enacted by the constraint gather info in the
“Simulation Cycles” IM of section A-2.1.1, which manages cycles and there-
fore also time-step increments.

The starting role of the “Flood” IM is the ‘controller’ role that is played by
the controller peer. It first gets the current time-step and then it sends a mes-
sage to the flood sub-simulator requesting water level changes at the current
time. After receiving an answer with flooding changes, it updates its local
knowledge of the world with the acquired information. The update is made
within the core constraint of this role, i.e., the updateFloodChanges(Changes)
constraint. The Java method implementing such constraint invokes a Prolog
query22.

The other role, flood simulator is played by the flood sub-simulator peer.
In this role, the core constraint is floodChanges(Time,Changes). Here the
flooding law (1) is implemented. For each node that has been affected by
some changes in flood status, it sends a message to the controller with flood-
ing changes in the form:

nodeFloodLevl(nodeid, levl)

where nodeid is the identifier of the node received in the topology file at
initialization time and levl is a real number in [0, 3] range indicating the
level of water in meters. The following conditions are assumed depending on
the water level values:

22Some basic code of the controller peer is left in Prolog

61

• levl < 0.5: no critical water

• levl > 0.5: stretch of road blocked

• levl >= 2: person dead

The following is an example of the content of the Changes argument in the
floodChanges(Time,Changes) constraint:

[nodeFloodLevl(23, 0.3), nodeFloodLevl(45, 1.2), nodeFloodLevl(66, 2.2)]

A-2.1.5 Sensory Info.lcc

This interaction model is initiated by the controller at every time-step. In
particular, it is enacted in the constraint send info, within the interaction
model “Simulation-cycle” described in A-2.1.1. It is used to send contextual
information (sensory-info) to all connected peers. Such information depend
on the recipient peer and are represented by the following parameters:

- PeerName: the name of the recipient peer;

- Timestep: the time-step referred by the sensory-info;

- Location: the current location of the peer;

- Flood : the water level registered at the location where the peer is;

- SimName: the name identifying the simulator;

- NeighPeers23.: a list of neighbors peers, that is, peer located in the
vicinity of the recipient peer PeerName.

The interaction model comprises two main roles, sensory info sender and
connected peer, which are taken by the controller and a connected peer re-
spectively (see LCC code below).

The controller starts the interaction by entering the sensory info sender
role where the parameters SimName and Timestep are retrieved and the
peer list PL of all connected peers is obtained. The controller then jumps
to the role sensory info sender1 to actually compute and send the sensory-
info to each peer in the list. The sensory-info are computed by solving the
constraint send update info that takes as input the peer identifier H, which
is assigned by the kernel, in order to extract the registered name of the peer
and hence its real name PeerName. Based on the PeerName, the parameters
Location and Flood are then obtained. The message sensory info is thus sent
to the current peer and the role recurses to handle the sensory-info of the
subsequent peer.

23Though the simulation is predisposed to handle this parameter, its computation is
still missing and, therefore, this parameter is always a blank list

62

Each connected peer plays the connected peer role. The peer simply
awaits for the sensory info incoming message and then performs an update of
the parameters received (Timestep, Location, Flood, NeighPeers) by means
of the constraint update info. After the update, the role is ended. The re-
cursion is not needed since a peer connected to the simulation subscribes to
this interaction with an acceptance policy of “all”, meaning that the peer
can execute more than one interaction of this type.

r(sensory_info_sender,initial)
r(sensory_info_sender1,auxiliary)
r(connected_peer,necessary,1,75)

a(sensory_info_sender,S) ::

null <- get_peer_name(SimName) and
getControllerTimestep(Timestep) and
getPeers(‘‘connected_peer’’,PL) then

a(sensory_info_sender1(SimName,Timestep,PL),S)

a(sensory_info_sender1(SimName,Timestep,PL),S) ::

null <- PL=[]

or

(
null <- PL=[H|T] then
(
sensory_info(Timestep,SimName,PeerName,Location,Flood,NeighPeers)
=> a(connected_peer,H)
<- send_update_info(Timestep,H,PeerName,Location,Flood,NeighPeers)

) then

a(sensory_info_sender1(SimName,Timestep,T),S)
)

a(connected_peer,Id) ::

sensory_info(Timestep,SimName,PeerName,Location,Flood,NeighPeers)
<= a(sensory_info_sender1,S) then

null <- update_info(Timestep,SimName,PeerName,Location,Flood,NeighPeers)

A-2.1.6 Visualiser.lcc

This interaction model is used to let the controller inform the visualiser of all
the changes that have occurred in the world at every time-step. It is enacted
in the constraint inform visualiser, within the interaction model “Simulation-
cycle” described in A-2.1.1. This ensures changes are sent out only once every
time-step.

The controller plays the controller role (see LCC code below). After hav-
ing retrieved the current time-step CurrTime and get the previous time-step
PrecTime, a check is done on the latter parameter to find out if the current

63

time-step is the first time-step of the simulation. If so, initial information
are retrieved and then sent to the visualiser. Such information regards: (i)
the water level threshold which establishes the maximum water level above
which a node is blocked; (ii) the peers who currently joined the simulation;
(iii) the initial positions of all connected peers, the location of the reporters
and their initial status. Notice that these information are got by solving
the constraints getThrInfo, getJoinInfo and getAtInfo respectively and are
sent via the initInfo message only once24. For time-steps greater than 1, a
unique constraint (getAllChanges) is solved which retrieves information of
type (iii). The information thus retrieved, which are contained in the pa-
rameter AllChanges, are then sent to the visualiser via the changes message.
The parameter CurrTime is also incorporated in the message. The parame-
ter AllChanges looks like the following, whose meaning is explained in section
A-2.1.1:

updates(2,[[at(Tom,peer,[11.1207037,46.0587387])],
[at(reporter3,reporter,[11.1116,46.0968,0.0])]]).

r(controller,initial)
r(visualiser,necessary)

a(controller,C) ::

null <- getCurrentTimestep(CurrTime) and
assign(CurrTime,CurrTime1) and
dec(CurrTime1,PrecTime) then

(
initInfo(CurrTime,ThrInfo,JoinInfo,AtInfo) => a(visualiser,V)
null <- equalZero(PrecTime) and

getThrInfo(ThrInfo) and
getJoinInfo(JoinInfo) and
getAtInfo(CurrTime,AtInfo)

)

or

(
changes(CurrTime,AllChanges) => a(visualiser,V)

null <- getAllChanges(CurrTime,AllChanges)
)

The visualiser plays the visualiser role. By receiving the initInfo mes-
sage, it starts its GUI with the parameter acquired (start visualiser). If a
changes message is received instead, it updates its history according to the
new information (constraint updateChanges). The update results in a change
on the GUI.

24The constraints getThrInfo, getJoinInfo and getAtInfo only retrieve the informa-
tion which are actually computed within the constraint inform visualiser of the “Sim-
ulation cycle” interaction model described in section A-2.1.1.

64

a(visualiser,V) ::

(
initInfo(ThrInfo,JoinInfo,AtInfo) <= a(controller,C) then
null <- start_visualiser(ThrInfo,JoinInfo,AtInfo)

)

or

(
changes(Timestep,AllChanges) <= a(controller,C) then
null <- updateChanges(Timestep,AllChanges)

)

A-2.1.7 Perform Action.lcc

This interaction model is used to let the connected physical peers inform
the controller of the physical actions they are performing. As mentioned
earlier, peers should inform the controller of all their physical actions since
these would result in changes in the physical world. Furthermore, it is the
controller that would confirm whether an action is currently possible or not.
This interaction model is executed every time a connected physical peer needs
to perform an action. In particular, its enaction takes place in the constraint
try move action of the “Evacuation” interaction model described in the next
section. Although the action in question is always a “move” action, this
interaction model is designed to be usable for any kind of action.

The connected physical peer initiates the interaction by entering the
action performer role (see LCC code below). Here, the parameters Regis-
teredName and Action are retrieved, by means of get registered name and
get peer action constraints, in order to send the action message. The pa-
rameter Action specifies the action the peer attempts to perform; in our
simulation25, it is expressed by the string “move(N1,N2, Vehicle)”, where
N1, N2 and Vehicle identify respectively the initial position, the final des-
tination and the mean of transport used to move. After having sent the
action message, the moving peer receives the action state message from the
controller. Such message contains the parameter ActionState which specifies
whether the action has been performed or stopped by the simulator. In any
case, the value of the parameter is stored in the local knowledge of the con-
nected peer through the set action state constraint. This interaction does
not tell anything about the future actions the peer will take depending on
the result received. In our simulation, this kind of issues are dealed with
in the peer’s OKCs rather than in the LCC code. This guarantees a major
flexibility in the interaction model which can thus be used in more general
contexts.

25Though generic, the actions currently performed are the “move” actions only.

65

r(action_performer,initial)
r(simulator,necessary,1)

a(action_performer,P)::

(
action(RegisteredName,Action) => a(simulator,S)

<- connected() and
get_registered_name(RegisteredName) and
get_peer_action(Action) then

action_state(ActionState) <= a(simulator,S) then

null <- set_action_state(ActionState)
)

The simulator’s controller plays the simulator role (see LCC code below).
Its aim is to tell the connected peer whether it can perform the action or
not. The controller subscribes to this interaction at the very beginning of
the simulation with an acceptance policy of “all”. This guarantees that
the controller can serve multiple requests from the connected peers. The
controller first checks whether the simulation has terminated or not. If yes,
the role is ended otherwise the action message is received. The constraint
update action results is thus solved in order to evaluate the possibility of
executing the action. In particular, being the action in question a “move”
action, the controller checks the action feasibility by determining the flood
level of the destination specified in the Action parameter; if the associated
stretch of road is blocked, the controller set the parameter ActionState to
“stopped”, this meaning that the peer cannot perform the action. On the
contrary, if no risk is associated to the piece of road, the controller updates
the position of the moving peer to the new location (the destination) and
sets the value of ActionState to “performed”. After this process, the message
action state is finally sent to the connected peer.

a(simulator,S)::

null <- getMaxTimestep(MaxTimestep) and getControllerTimestep(Timestep) then

(
null <- greaterOrEqual(Timestep,MaxTimestep)
)

or

(
action(RegisteredName,Action) <= a(action_performer,P) then
action_state(ActionState) => a(action_performer,P)
<- update_action_results(RegisteredName,Action,ActionState)

)

66

A-2.2 Interaction Models used by network peers

In what follows, we describe the interaction models used by the emergency
peers in the selected use case, i.e. the evacuation plan.

A-2.2.1 Evacuation.lcc

This interaction model represents the main one to simulate the evacuation
phase. It can be used in all those situations where an emergency chief sends
the directive of reaching specific locations to its subordinates. It foresees
the main roles emergency chief and emergency subordinate which, in our
simulation, are played by a fire-chief and a fire-fighter peer respectively(see
LCC code below).

The role of the emergency chief is simply that of retrieving a list of avail-
able subordinates (getPeers26 constraint), assigning a destination to each
subordinate (assign goal constraint) and sending an alert message contain-
ing the destination to her/him.

The emergency subordinate, denoted as “moving peer” from now on,
receives the above message from the chief and prepare to satisfy the directive.
The constraints set goal and get current position are solved in order to set
the goal to be achieved (reach the goal destination G) and get the current
position CurrPos. The role goal achiever is then taken. The activities of the
emergency subordinate thus evolve through three roles: the afore mentioned
goal achiever role which abstractly models the activity of searching for a
path and moving towards the goal; the free path finder role which defines
the operations needed to find a free path; the goal mover role which models
the actions needed to move towards the goal destination.

The goal achiever role is specified with the parameters From and To
which respectively indicate the location from where a peer starts moving and
the final destination to be reached (see LCC code below). The comments in
the code clearly explicate the logic and meaning of the role.

The free path finder role is specified with the input parameters From and
To already mentioned and produces, once it is ended, the output parameter
FreePath which contains the shortest free path connecting the nodes From
and To. The constraint find path enacts the interaction model “Find-Route”
(see next section) in order to find an existing path. This operation is repeated
till a free path is found or there are no paths anymore. A free path is a path
that is not blocked by the flood. The information on the blockage state
of a path are acquired by solving the constraint request path state which
enacts the interaction model “Check-Route-State” (see section A-2.2.3 for
more details).

26This constraint is not defined by the designer of the interaction models but is already
provided in the OK kernel

67

r(emergency_chief,initial)
r(emergency_subordinate,necessary)
r(goal_achiever,auxiliary)
r(free_path_finder,auxiliary)
r(goal_mover,auxiliary)

a(emergency_chief,FFC)::
null <- getPeers("emergency_subordinate", FFL) then
a(emergency_chief(FFL),FFC)

a(emergency_chief(FFL),FFC) ::

null <- FFL = []

or

(
alert(G) => a(emergency_subordinate,FFL_H)
<- FFL=[FFL_H|FFL_T] and assign_goal(FFL_H,G) then
a(emergency_chief(FFL_T),FFC)

)

a(emergency_subordinate,FF)::

alert(G) <= a(emergency_chief,FFC) then
null <- set_goal(G) and get_current_position(CurrPos) then

a(goal_achiever(CurrPos,G),FF)

a(goal_achiever(From,To),GA)::

(
//moving peer already at destination
null <- equal(To,From) and setGoalAchieved(To)

or

(//try to find a free path
a(free_path_finder(From,To,FreePath), GA) then

//no free paths between From and To
null <- FreePath=[] and setGoalUnreachable(To)

or

//move towards the goal destination along the free path found
a(goal_mover(From,To,FreePath),GA)

)
)

68

a(free_path_finder(From,To,FreePath), FRF) ::

null <- find_path(From,To,Path) then
(

//no paths are found
null <- Path=[] and makeEmptyList(FreePath)

or

(
//check if the path is free
null <- request_path_state(Path,PathState) and

path_free(PathState) then
null <- assign(Path,FreePath)

)

or

//search for an alternative path which is free
a(free_path_finder(From,To,FreePath), FRF)

)

Finally, the role goal mover is used to actually move towards the goal
destination. The role consists in moving step by step, from a node to the
next one. At every step, the moving peer tries to perform the “move” action
(try move action constraint) as explained in section A-2.2.2 with the aim
to arrive at the next location along the path. Also, once such location is
reached, the peer checks the blockage state of the remaining path through
the constraint request path state27. If the peer is prevented to make even
the first step, most probably an inaccurate signaling by part of the Civil
Protection Unit (CPU) happens during the execution of the “Check-Route-
State” interaction model; this because the goal mover role is entered only
if a free path is found. The logic and meaning of the role just described is
made explicit by the comments of the LCC code below.

27Notice that a path which was found to be free the first time it was checked, can get
blocked subsequently.

69

a(goal_mover(Start,Goal,Path), GM) ::

null <- getSubGoal(Path,SubGoal) and
try_move_action(Start,SubGoal,ActionState) then

(
//The moving peer has moved

null <- action_performed(ActionState) and
update_current_position(SubGoal) then

//the moving peer has reached the final location
null <- equal(SubGoal,Goal) and setGoalAchieved(Goal)

or

(
//the moving peer reaches an intermediate node (SubGoal) in the Path
null <- notEqual(SubGoal,Goal) then
//check the blockage state of the remaining path
//and take decision on whether to move

null <- update_path(Path,RestPath) and
request_path_state(RestPath,PathState) and
take_move_decision(PathState,MoveDecision) then

(// the moving peer proceeds: path is free
null <- go_for_move(MoveDecision) then
a(goal_mover(SubGoal,Goal,RestPath), GM)

)

or

//the moving peer stops: path is blocked
//find alternative free paths from SubGoal to Goal
a(goal_achiever(SubGoal,Goal),GM)

)
)

or

(
//The moving peer stops: wrong info from CPU peer received (fault case)
//find alternative free paths from Start to Goal
null <- update_blocked_nodes(Start,SubGoal) then
a(goal_achiever(Start,Goal),GM)

)

A-2.2.2 Find-Route.lcc

This interaction model is used to retrieve a route connecting two given loca-
tions. Two roles are involved: the route finder role, played by an emergency
subordinate in our case, and the route service role, taken by a route provider.

The route finder initiates the interaction by sending a route request mes-
sage to the route service. The message contains the following parameters:

- PeerName: the name identifying the requester;

- From: the starting location;

- To: the final destination;

- Vehicle: the means of transport used to move;

70

- BlkNodes : a list of (already known) inaccessible locations which are to
be excluded from the path requested.

Once the above message is sent and the reply received with the route
message, the path Path specified in it is stored in the peer local knowledge
(store path constraint).

The route service, after reception of the route request message, solves the
constraint get route in order to compute the shortest path (Path) between
the given locations which does not pass by the nodes specified in the list
BlkNodes. If no such path is found, the parameter Path becomes an empty
list. In any case, the route message is sent with the parameter specified. The
LCC code of the interaction just illustrated follows:

r(route_finder,initial)
r(route_service,necessary)

a(route_finder,RF)::
route_request(PeerName,From,To,Vehicle,BlkNodes) => a(route_service(RS)
<- get_peer_name(PeerName) and get_current_position(From) and

get_final_destination(To) and set_vehicle(Vehicle) and
get_blocked_nodes(BlkNodes) then

route(From,To,Path) <= a(route_service(RS)) then
null <- store_path(Path)

a(route_service,RS)::

route_request(PeerName,From,To,Vehicle,BlkNodes) <= a(route_finder,RF) then
route(From,To,Path) => a(route_finder,RF)

<- get_route(PeerName,From,To,Vehicle,BlkNodes,Path)

A-2.2.3 Check-Route-State.lcc

This interaction model is used to verify the conditions of the roads and,
therefore, the ability for all drivers to be able to arrive at destination. It
involves a peer asking for the blockage status of a given route and a peer
providing such kind of information. In our simulation, the requesting peer is
a fire-fighter and the info provider is the Civil Protection Unit (CPU).

A fire-fighter initiates the interaction by taking the role path info requester
(see LCC code below). Here, the peer first verifies its connection to the sim-
ulation and acquires the parameter WaitTime which will be used in the
next role. After getting the path Path to check (get path to check con-
straint), the message path info request is sent to the info provider. The
role path info receiver is then assumed. In such role, the requesting peer
waits for the reply till either this is received or the maximum await time
(WaitTime) has elapsed. The actions taken when a reply is not received are
not foreseen by this interaction; rather, they are established in the requester
peer’s OKCs. In our simulation, when the peer doesn’t obtain the seeked
information, the path is considered as it was practicable. When received, the
reply is constituted by the path info message and its parameters:

71

- BlkNodes : a list of locations in the requested path which are unreach-
able;

- FreeNodes : a list of locations in the requested path which are reachable;

- Timesteps : a list of time-steps relative to the above parameters. Each
time-step represents the last time at which the status of the correspond-
ing location has been updated. This parameter allows the requesting
peer to know “how old” the searched information is.

The role path info provider taken by the CPU is very simple and constists
in receiving the message path info request and serving the request. Notice
that, to serve many requests, the CPU peer subscribes to this interaction
model at the beginning of the simulation, with an acceptance policy of “all”.
The request is handled by getting the current time-step CurrTimestep and
obtaining the path info. In our simulation, a local database28 is consulted
for this purpose: the constraint get path status retrieves, if present, the wa-
ter level registered at the locations specified in the path Path at the time
CurrTimestep. Depending on the water level value, the relative location is
inserted in either the BlkNodes or the FreeNodes list. If the status of a given
location exists but refers to a previous time-step, this time-step is considered
and put in the list Timesteps.

A-2.2.4 Querier-Reporter.lcc

This interaction used to model the communication between the Civil Pro-
tection Unit (CPU) and a reporter peer is composed by two main roles: the
querier role and the reporter role (see LCC code below).

The heading of the specification defines that the reporter role can be
played by more than one peer, the maximum number allowed being 200.
The CPU takes the role of querier with a subscription description of the type
“querier(all)”, while a reporter peer subscribes to the reporter role with a
subscription description of the type “reporter(node)”, where node univocally
identifies a specific geographical location.

By subscribing as a “querier(all)”, the CPU specifies that it is inter-
ested in all the nodes present in the emergency area. However, if the in-
terest is just in a subset of such locations, it is possible to subscribe as a
“querier(node1,...,nodeN)”. This sort of mechanisms allows a flexible use of
the interaction specification which doesn’t need to be modified when the lo-
cations of interest change.

28The knowledge base of the CPU is filled with information gathered periodically from
the reporter peers by means of the “Querier-Reporter” interaction model (see next section
for more details).

72

r(path_info_requester,initial)
r(path_info_receiver,auxiliary)
r(path_info_provider,necessary,1)

a(path_info_requester, PIR)::
null <- connected() and getWaitTime(1,WaitTime) then

path_info_request(Path) => a(path_info_provider(PIP)
<- get_path_to_check(Path) then

a(path_info_receiver(WaitTime,1),PIR)

a(path_info_receiver(WaitTime,N),PIR)::

null <- equalZero(N)

or

(
path_info(BlkNodes,FreeNodes,Timesteps) <= a(path_info_provider,PIP) then
null <- store_path_info(BlkNodes,FreeNodes,Timesteps) and

dec(N,NewN) then
a(path_info_receiver(WaitTime,NewN),PIR)

)

or

null <- equalZero(WaitTime)

or

(
null <- sleep(1000) and dec(WaitTime,NewWaitTime) then
a(path_info_receiver(NewWaitTime,N),PIR)

)

a(path_info_provider, PIP)::

path_info_request(Path) <= a(path_info_requester, PIR) then

path_info(BlkNodes,FreeNodes,Timesteps) => a(path_info_requester, PIR)
<- getTimestep(CurrentTimestep) and

get_path_status(Path,CurrentTimestep,BlkNodes,FreeNodes,Timesteps)

The querier role entails two sub-roles: the sender and the receiver role.
The CPU first gets the current timestep Timestep and then retrieves the
list of all the peers which are playing the reporter role. Notice that these
peers can be selected according to one of the three strategies described in
[19]. After this, the CPU enters the role sender in order to send the mes-
sage request flood status(Timestep) to all the selected reporter peers. Once
the messages are sent, the CPU computes a waiting time WaitTime which
represents the maximum wait time for the reception of the replies expected.
This time is proportional to the number N of messages awaited.
The CPU enters the role receiver, thus awaiting for water level informa-
tion from the reporter peers. The LCC specification for this role comprises
two main parts: one models the reception of the message water level and the
other shapes the time elapsing. The information embedded in the water level

73

message are: (1) an identification of the reporter ReporterID ; (2) the identifi-
cation of the location Node; (3) the timestep Timestep representing when the
information was requested and, most important, (4) the value of the water
level WaterLevel registered by the reporter at the location.

r(querier,initial)
r(sender,auxiliary)
r(receiver,auxiliary)
r(reporter,necessary,1,200)

a(querier,Q)::

null <- get_peer_name(PeerName) and getTimestep(Timestep) and
getPeers("reporter",SPL) then

a(querier1(PeerName,Timestep,SPL),Q) then

null <- size(SPL,N) and getWaitTime(N,WaitTime) then

a(receiver(WaitTime,N),Q) then

null <- close_connection(Timestep)

a(querier1(PeerName,Timestep,SPL),Q) ::

null <- SPL=[]

or

(
null <- SPL=[H|T] then
request_flood_status(PeerName,Timestep) => a(reporter,H) then
a(querier1(PeerName,Timestep,T),Q)

)

a(receiver(WaitTime,N),Q) ::

null <- equalZero(N)

or

(
water_level(ReporterID,Node,Timestep,WaterLevel) <= a(reporter,R) then
null <- update_flood_record(Node,WaterLevel,ReporterID,Timestep) and

dec(N,NewN) then
a(receiver(WaitTime,NewN),Q)

)

or //handle the wait-time elapsing

(
null <- equalZero(WaitTime)

or

(
null <- sleep(1000) and dec(WaitTime,NewWaitTime) then
a(receiver(NewWaitTime,N),Q)

)
)

74

After having received the message, the CPU stores the data just acquired
(update flood record constraint) and waits for other similar messages from
other reporters. If the wait time established by the CPU expires and not all
the reporters have replied, the CPU terminates the interaction thus missing
some water level data.

The reporter role is very straightforward: after having received the mes-
sage request flood status, the reporter peer retrieves the water level sensed
(retrieve flood level constraint). Notice that the value of the water level reg-
istered by a reporter may not correpond to the real value (e.g., the reporter
peer is an untrustworthy peer). Once the water level is retrieved, the reporter
peer sends the message water level back to the requester.

a(reporter,R) ::

request_flood_status(PeerName,Timestep) <= a(querier1,Q) then
water_level(ReporterID,Node,Timestep,WaterLevel) => a(receiver, Q)
<- retrieve_flood_level(ReporterID,Node,PeerName,Timestep,WaterLevel)

75

